These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 38146218)
21. Iron-oxide nanoparticles by the green synthesis method using Moringa oleifera leaf extract for fluoride removal. Silveira C; Shimabuku QL; Fernandes Silva M; Bergamasco R Environ Technol; 2018 Nov; 39(22):2926-2936. PubMed ID: 28823221 [TBL] [Abstract][Full Text] [Related]
22. Optimization and mechanisms of methylene blue removal by foxtail millet shell from aqueous water and reuse in biosorption of Pb(II), Cd(II), Cu(II), and Zn(II) for secondary times. He P; Liu J; Ren ZR; Zhang Y; Gao Y; Chen ZQ; Liu X Int J Phytoremediation; 2022; 24(4):350-363. PubMed ID: 34410866 [TBL] [Abstract][Full Text] [Related]
23. Central Composite Design for Adsorption of Pb(II) and Zn(II) Metals on PKM-2 Jayan N; Bhatlu M LD; Akbar ST ACS Omega; 2021 Oct; 6(39):25277-25298. PubMed ID: 34632187 [TBL] [Abstract][Full Text] [Related]
24. Surface and adsorptive properties of Moringa oleifera bark for removal of V(V) from aqueous solutions. Mnisi RL; Ndibewu PP Environ Monit Assess; 2017 Nov; 189(12):606. PubMed ID: 29103100 [TBL] [Abstract][Full Text] [Related]
25. Removal of Ni(II) from aqueous solution using Moringa oleifera seeds as a bioadsorbent. Marques TL; Alves VN; Coelho LM; Coelho NM Water Sci Technol; 2012; 65(8):1435-40. PubMed ID: 22466590 [TBL] [Abstract][Full Text] [Related]
26. Removal of microcystin-LR from aqueous solution using Moringa oleifera Lam. seeds. Yasmin R; Aftab K; Kashif M Water Sci Technol; 2019 Jan; 79(1):104-113. PubMed ID: 30816867 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of a magnetic coagulant based on Fe Mateus GAP; Dos Santos TRT; Sanches IS; Silva MF; de Andrade MB; Paludo MP; Gomes RG; Bergamasco R Environ Technol; 2020 May; 41(13):1648-1663. PubMed ID: 30382011 [TBL] [Abstract][Full Text] [Related]
28. Development of an activated carbon impregnation process with iron oxide nanoparticles by green synthesis for diclofenac adsorption. Silveira C; Shimabuku-Biadola QL; Silva MF; Vieira MF; Bergamasco R Environ Sci Pollut Res Int; 2020 Feb; 27(6):6088-6102. PubMed ID: 31865561 [TBL] [Abstract][Full Text] [Related]
29. Water decontamination containing nitrate using biosorption with Moringa oleifera in dynamic mode. Paixão RM; Reck IM; Gomes RG; Bergamasco R; Vieira MF; Vieira AMS Environ Sci Pollut Res Int; 2018 Aug; 25(22):21544-21554. PubMed ID: 29781059 [TBL] [Abstract][Full Text] [Related]
30. Environmentally friendly biosorbents (husks, pods and seeds) from Moringa oleifera for Pb(II) removal from contaminated water. Tavares FO; Pinto LAM; Bassetti FJ; Vieira MF; Bergamasco R; Vieira AMS Environ Technol; 2017 Dec; 38(24):3145-3155. PubMed ID: 28145150 [TBL] [Abstract][Full Text] [Related]
31. Green and low-temperature synthesis of the magnetic modified biochar under the air atmosphere for the adsorptive removal of heavy metal ions from wastewater: CCD-RSM experimental design with isotherm, kinetic, and thermodynamic studies. Arabkhani P; Asfaram A; Sadegh F Environ Sci Pollut Res Int; 2023 Dec; 30(57):120085-120102. PubMed ID: 37936036 [TBL] [Abstract][Full Text] [Related]
32. Removal of levofloxacin from aqueous solution by green synthesized magnetite (Fe Altaf S; Zafar R; Zaman WQ; Ahmad S; Yaqoob K; Syed A; Khan AJ; Bilal M; Arshad M Ecotoxicol Environ Saf; 2021 Dec; 226():112826. PubMed ID: 34592521 [TBL] [Abstract][Full Text] [Related]
33. Performance of Moringa oliefera as a biosorbent for chromium removal. Ghebremichael K; Gebremedhin N; Amy G Water Sci Technol; 2010; 62(5):1106-11. PubMed ID: 20818052 [TBL] [Abstract][Full Text] [Related]
34. Rapid Removal of Toxic Remazol Brilliant Blue-R Dye from Aqueous Solutions Using Parimelazhagan V; Yashwath P; Arukkani Pushparajan D; Carpenter J Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293336 [TBL] [Abstract][Full Text] [Related]
35. Development of a new low-cost adsorbent functionalized with iron nanoparticles for removal of metformin from contaminated water. Cusioli LF; Quesada HB; de Brito Portela Castro AL; Gomes RG; Bergamasco R Chemosphere; 2020 May; 247():125852. PubMed ID: 31927183 [TBL] [Abstract][Full Text] [Related]
36. Bioremediation of Cd(II), Pb(II) and Cu(II) from industrial effluents by Moringa stenopetala seed husk. Kebede TG; Dube S; Mhuka V; Nindi MM J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(4):337-351. PubMed ID: 30614373 [TBL] [Abstract][Full Text] [Related]
37. Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: Equilibrium, kinetics, thermodynamics and artificial neural network modeling. Karaman C; Karaman O; Show PL; Orooji Y; Karimi-Maleh H Environ Res; 2022 May; 207():112156. PubMed ID: 34599897 [TBL] [Abstract][Full Text] [Related]
38. Modeling of methylene blue removal on Fe Altintig E; Özcelik TÖ; Aydemir Z; Bozdag D; Kilic E; Yılmaz Yalçıner A Int J Phytoremediation; 2023; 25(13):1714-1732. PubMed ID: 36927305 [TBL] [Abstract][Full Text] [Related]
39. Enhancing the efficiency of Ni(II), Cd(II), and Cu(II) adsorption from aqueous solution using schist/alginate composite: batch and continuous studies. Allahkarami E; Allahkarami E; Azadmehr A Environ Sci Pollut Res Int; 2023 Oct; 30(48):105504-105521. PubMed ID: 37715033 [TBL] [Abstract][Full Text] [Related]
40. Cadmium and copper heavy metal treatment from water resources by high-performance folic acid-graphene oxide nanocomposite adsorbent and evaluation of adsorptive mechanism using computational intelligence, isotherm, kinetic, and thermodynamic analyses. Eftekhari M; Akrami M; Gheibi M; Azizi-Toupkanloo H; Fathollahi-Fard AM; Tian G Environ Sci Pollut Res Int; 2020 Dec; 27(35):43999-44021. PubMed ID: 32748352 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]