BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3814650)

  • 1. [The role of Na+ ions in the respiration, formation of the membrane potential and movement of the alkali-resistant marine bacterium Vibrio alginolyticus].
    Dibrov PA; Kostyrko VA; Lazarova RL; Skulachev VP; Smirnova IA
    Biokhimiia; 1987 Jan; 52(1):15-23. PubMed ID: 3814650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant vibrio Alginolyticus.
    Dibrov PA; Kostryko VA; Lazarova RL; Skulachev VP; Smirnova IA
    Biochim Biophys Acta; 1986 Jul; 850(3):449-57. PubMed ID: 2425848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells.
    Dibrov PA; Lazarova RL; Skulachev VP; Verkhovskaya ML
    Biochim Biophys Acta; 1986 Jul; 850(3):458-65. PubMed ID: 2942186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of Na+ electrochemical potential by the Na+-motive NADH oxidase and Na+/H+ antiport system of a moderately halophilic Vibrio costicola.
    Udagawa T; Unemoto T; Tokuda H
    J Biol Chem; 1986 Feb; 261(6):2616-22. PubMed ID: 3005258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Detection of a sodium pump in the terminal segment of the bacterial respiratory chain].
    Verkhovskaia ML; Semeĭkina AL; Skulachev VP; Bulygina ES; Chumakov KM
    Biokhimiia; 1989 Sep; 54(9):1457-66. PubMed ID: 2590685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADH:ubiquinone oxidoreductase of Vibrio alginolyticus: purification, properties, and reconstitution of the Na+ pump.
    Pfenninger-Li XD; Albracht SP; van Belzen R; Dimroth P
    Biochemistry; 1996 May; 35(20):6233-42. PubMed ID: 8639563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of the respiratory Na+ pump in bioenergetics of Vibrio alginolyticus.
    Tokuda H; Asano M; Shimamura Y; Unemoto T; Sugiyama S; Imae Y
    J Biochem; 1988 Apr; 103(4):650-5. PubMed ID: 3170506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Stabilization of delta mu H+ in Escherichia coli upon K+ and Na+ transmembrane gradient dissipation].
    Brown II; Kim IuV
    Biokhimiia; 1982 Jan; 47(1):137-44. PubMed ID: 7039692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of Na-dependent respiratory chain in Vibrio anguillarum, a fish pathogen, in comparison with other marine Vibrios.
    Fujiwara-Nagata E; Kogure K; Kita-Tsukamoto K; Wada M; Eguchi M
    FEMS Microbiol Ecol; 2003 May; 44(2):225-30. PubMed ID: 19719639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of some marine bacteria, a moderate halophile, and Escherichia coli to uncouplers at alkaline pH.
    MacLeod RA; Wisse GA; Stejskal FL
    J Bacteriol; 1988 Sep; 170(9):4330-7. PubMed ID: 3045092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH:quinone oxidoreductase of Klebsiella pneumoniae.
    Dimroth P; Thomer A
    Arch Microbiol; 1989; 151(5):439-44. PubMed ID: 2545175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory-driven Na+ electrical potential in the bacterium Vitreoscilla.
    Efiok BJ; Webster DA
    Biochemistry; 1990 May; 29(19):4734-9. PubMed ID: 2372555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubilization and reconstitution of the Na+-motive NADH oxidase activity from the marine bacterium Vibrio alginolyticus.
    Tokuda H
    FEBS Lett; 1984 Oct; 176(1):125-8. PubMed ID: 6092131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic and energetic properties of the aerobic respiratory chain-linked NADH oxidase system in the marine bacterium Pseudomonas nautica.
    Cho KH; Kim YJ
    Mol Cells; 2000 Aug; 10(4):432-6. PubMed ID: 10987141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Na(+)-motive respiratory chain of marine bacteria.
    Tokuda H; Unemoto T
    Microbiol Sci; 1985; 2(3):65-6, 69-71. PubMed ID: 2856376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ATP-driven primary Na+ pump in subcellular vesicles of Vibrio alginolyticus.
    Dibrov PA; Skulachev VP; Sokolov MV; Verkhovskaya ML
    FEBS Lett; 1988 Jun; 233(2):355-8. PubMed ID: 2968282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+ is translocated at NADH:quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus.
    Tokuda H; Unemoto T
    J Biol Chem; 1984 Jun; 259(12):7785-90. PubMed ID: 6736026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cAMP-mediated catabolite repression and electrochemical potential-dependent production of an extracellular amylase in Vibrio alginolyticus.
    Kim UO; Hahm KS; Park YH; Kim YJ
    Biosci Biotechnol Biochem; 1999 Feb; 63(2):288-92. PubMed ID: 10192907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotational fluctuation of the sodium-driven flagellar motor of Vibrio alginolyticus induced by binding of inhibitors.
    Muramoto K; Magariyama Y; Homma M; Kawagishi I; Sugiyama S; Imae Y; Kudo S
    J Mol Biol; 1996 Jun; 259(4):687-95. PubMed ID: 8683575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of Na+ and K+ ions on the luminescence of intact Vibrio harveyi cells at different pH values].
    Vitukhnovskaia LA; Ismailov AD
    Mikrobiologiia; 2001; 70(4):525-30. PubMed ID: 11558279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.