BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38147218)

  • 1. Preparation of Oxidized and Reduced PTP4A1 for Structural and Functional Studies.
    Kumar GS
    Methods Mol Biol; 2024; 2743():211-222. PubMed ID: 38147218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: Intramolecular or intermolecular disulfide bond formation.
    Machado LESF; Shen TL; Page R; Peti W
    J Biol Chem; 2017 May; 292(21):8786-8796. PubMed ID: 28389559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Destabilization of the SHP2 and SHP1 protein tyrosine phosphatase domains by a non-conserved "backdoor" cysteine.
    Yarnall MTN; Kim SH; Korntner S; Bishop AC
    Biochem Biophys Rep; 2022 Dec; 32():101370. PubMed ID: 36275931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity.
    Netto LES; Machado LESF
    FEBS J; 2022 Sep; 289(18):5480-5504. PubMed ID: 35490402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential oxidation of protein-tyrosine phosphatases.
    Groen A; Lemeer S; van der Wijk T; Overvoorde J; Heck AJ; Ostman A; Barford D; Slijper M; den Hertog J
    J Biol Chem; 2005 Mar; 280(11):10298-304. PubMed ID: 15623519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
    Denu JM; Tanner KG
    Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two vicinal cysteines confer a peculiar redox regulation to low molecular weight protein tyrosine phosphatase in response to platelet-derived growth factor receptor stimulation.
    Chiarugi P; Fiaschi T; Taddei ML; Talini D; Giannoni E; Raugei G; Ramponi G
    J Biol Chem; 2001 Sep; 276(36):33478-87. PubMed ID: 11429404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Intracellular Reduced (Catalytically Active) SHP-1 and Analyses of Catalytically Inactive SHP-1 after Oxidation by Pervanadate or H
    Choi S; Love PE
    Bio Protoc; 2018 Jan; 8(1):. PubMed ID: 29552589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress promotes fibrosis in systemic sclerosis through stabilization of a kinase-phosphatase complex.
    Zhang R; Kumar GS; Hansen U; Zoccheddu M; Sacchetti C; Holmes ZJ; Lee MC; Beckmann D; Wen Y; Mikulski Z; Yang S; Santelli E; Page R; Boin F; Peti W; Bottini N
    JCI Insight; 2022 Apr; 7(8):. PubMed ID: 35451370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation sensitivity of the catalytic cysteine of the protein-tyrosine phosphatases SHP-1 and SHP-2.
    Weibrecht I; Böhmer SA; Dagnell M; Kappert K; Ostman A; Böhmer FD
    Free Radic Biol Med; 2007 Jul; 43(1):100-10. PubMed ID: 17561098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible oxidation of PRL family protein-tyrosine phosphatases.
    Funato Y; Miki H
    Methods; 2014 Jan; 65(2):184-9. PubMed ID: 23831336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction.
    Sohn J; Rudolph J
    Biochemistry; 2003 Sep; 42(34):10060-70. PubMed ID: 12939134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues.
    Cook NL; Moeke CH; Fantoni LI; Pattison DI; Davies MJ
    Free Radic Biol Med; 2016 Jan; 90():195-205. PubMed ID: 26616646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functions and mechanisms of redox regulation of cysteine-based phosphatases.
    Salmeen A; Barford D
    Antioxid Redox Signal; 2005; 7(5-6):560-77. PubMed ID: 15890001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PTP4A1 promotes TGFβ signaling and fibrosis in systemic sclerosis.
    Sacchetti C; Bai Y; Stanford SM; Di Benedetto P; Cipriani P; Santelli E; Piera-Velazquez S; Chernitskiy V; Kiosses WB; Ceponis A; Kaestner KH; Boin F; Jimenez SA; Giacomelli R; Zhang ZY; Bottini N
    Nat Commun; 2017 Oct; 8(1):1060. PubMed ID: 29057934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modified cysteinyl-labeling assay reveals reversible oxidation of protein tyrosine phosphatases in angiomyolipoma cells.
    Boivin B; Zhang S; Arbiser JL; Zhang ZY; Tonks NK
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9959-64. PubMed ID: 18632564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox regulation of MAP kinase phosphatase 3.
    Seth D; Rudolph J
    Biochemistry; 2006 Jul; 45(28):8476-87. PubMed ID: 16834321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Protein Carbonylation and Protein Tyrosine Phosphatase (PTP) Oxidation in Vascular Smooth Muscle Cells (VSMCs) Using Immunoblotting Approaches.
    Tsiropoulou S; Touyz RM
    Methods Mol Biol; 2017; 1614():31-46. PubMed ID: 28500593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An immunochemical approach to detect oxidized protein tyrosine phosphatases using a selective C-nucleophile tag.
    Garcia FJ; Carroll KS
    Mol Biosyst; 2016 May; 12(6):1790-8. PubMed ID: 26757830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.