These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38147420)

  • 1. MDTL-ACP: Anticancer Peptides Prediction Based on Multi-Domain Transfer Learning.
    Cao J; Zhou W; Yu Q; Ji J; Zhang J; He S; Zhu Z
    IEEE J Biomed Health Inform; 2023 Dec; PP():. PubMed ID: 38147420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ACP-MLC: A two-level prediction engine for identification of anticancer peptides and multi-label classification of their functional types.
    Deng H; Ding M; Wang Y; Li W; Liu G; Tang Y
    Comput Biol Med; 2023 May; 158():106844. PubMed ID: 37058760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation.
    Chen XG; Zhang W; Yang X; Li C; Chen H
    Front Genet; 2021; 12():698477. PubMed ID: 34276801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides.
    Ahmed S; Muhammod R; Khan ZH; Adilina S; Sharma A; Shatabda S; Dehzangi A
    Sci Rep; 2021 Dec; 11(1):23676. PubMed ID: 34880291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CancerGram: An Effective Classifier for Differentiating Anticancer from Antimicrobial Peptides.
    Burdukiewicz M; Sidorczuk K; Rafacz D; Pietluch F; Bąkała M; Słowik J; Gagat P
    Pharmaceutics; 2020 Oct; 12(11):. PubMed ID: 33142753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G-ACP: a machine learning approach to the prediction of therapeutic peptides for gastric cancer.
    Azad H; Akbar MY; Sarfraz J; Haider W; Riaz MN; Ali GM; Ghazanfar S
    J Biomol Struct Dyn; 2024 Mar; ():1-14. PubMed ID: 38450672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ACP-ESM: A novel framework for classification of anticancer peptides using protein-oriented transformer approach.
    Kilimci ZH; Yalcin M
    Artif Intell Med; 2024 Oct; 156():102951. PubMed ID: 39173421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion.
    Cao R; Wang M; Bin Y; Zheng C
    PeerJ; 2021; 9():e11906. PubMed ID: 34414035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MA-PEP: A novel anticancer peptide prediction framework with multimodal feature fusion based on attention mechanism.
    Liang X; Zhao H; Wang J
    Protein Sci; 2024 Apr; 33(4):e4966. PubMed ID: 38532681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ACP-CapsPred: an explainable computational framework for identification and functional prediction of anticancer peptides based on capsule network.
    Yao L; Xie P; Guan J; Chung CR; Zhang W; Deng J; Huang Y; Chiang YC; Lee TY
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39293807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides.
    Zhou W; Liu Y; Li Y; Kong S; Wang W; Ding B; Han J; Mou C; Gao X; Liu J
    Patterns (N Y); 2023 Mar; 4(3):100702. PubMed ID: 36960450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mACPpred 2.0: Stacked Deep Learning for Anticancer Peptide Prediction with Integrated Spatial and Probabilistic Feature Representations.
    Sangaraju VK; Pham NT; Wei L; Yu X; Manavalan B
    J Mol Biol; 2024 Sep; 436(17):168687. PubMed ID: 39237191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TP-LMMSG: a peptide prediction graph neural network incorporating flexible amino acid property representation.
    Chen N; Yu J; Zhe L; Wang F; Li X; Wong KC
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38920345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ACP_MS: prediction of anticancer peptides based on feature extraction.
    Zhou C; Peng D; Liao B; Jia R; Wu F
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36326080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MDTL: A Novel and Model-Agnostic Transfer Learning Strategy for Cross-Subject Motor Imagery BCI.
    Li A; Wang Z; Zhao X; Xu T; Zhou T; Hu H
    IEEE Trans Neural Syst Rehabil Eng; 2023 Mar; PP():. PubMed ID: 37030758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides.
    He W; Wang Y; Cui L; Su R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating support vector machine with sequential minimal optimization to identify anticancer peptides.
    Wan Y; Wang Z; Lee TY
    BMC Bioinformatics; 2021 May; 22(1):286. PubMed ID: 34051755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective identification and differential analysis of anticancer peptides.
    Zhang L; Hu X; Xiao K; Kong L
    Biosystems; 2024 Jul; 241():105246. PubMed ID: 38848816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation.
    Arif M; Musleh S; Fida H; Alam T
    Sci Rep; 2024 Jul; 14(1):16992. PubMed ID: 39043738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.