These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 38147506)

  • 1. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics.
    Li T; Kambanis J; Sorenson TL; Sunde M; Shen Y
    Biomacromolecules; 2024 Jan; 25(1):5-23. PubMed ID: 38147506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiconductive and Biocompatible Nanofibrils from the Self-Assembly of Amyloid π-Conjugated Peptides.
    Kihal N; Côté-Cyr M; Nazemi A; Bourgault S
    Biomacromolecules; 2023 Mar; 24(3):1417-1431. PubMed ID: 36847776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heparin assisted assembly of somatostatin amyloid nanofibrils results in disordered precipitates by hindrance of protofilaments interactions.
    Dharmadana D; Reynolds NP; Dekiwadia C; Conn CE; Valéry C
    Nanoscale; 2018 Oct; 10(38):18195-18204. PubMed ID: 30141801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From Soy Waste to Bioplastics: Industrial Proof of Concept.
    Bagnani M; Peydayesh M; Knapp T; Appenzeller E; Sutter D; Kränzlin S; Gong Y; Wehrle A; Greuter S; Bucher M; Schmid M; Mezzenga R
    Biomacromolecules; 2024 Mar; 25(3):2033-2040. PubMed ID: 38327086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyloid fibril-nanocellulose interactions and self-assembly.
    Kummer N; Giacomin CE; Fischer P; Campioni S; Nyström G
    J Colloid Interface Sci; 2023 Jul; 641():338-347. PubMed ID: 36934581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical propagation of structural features in protein nanomaterials.
    Kamada A; Herneke A; Lopez-Sanchez P; Harder C; Ornithopoulou E; Wu Q; Wei X; Schwartzkopf M; Müller-Buschbaum P; Roth SV; Hedenqvist MS; Langton M; Lendel C
    Nanoscale; 2022 Feb; 14(6):2502-2510. PubMed ID: 35103743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of Functional Nanostructures by Short Helical Peptide Building Blocks.
    Bera S; Gazit E
    Protein Pept Lett; 2019; 26(2):88-97. PubMed ID: 30227810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A General and Convenient Peptide Self-Assembling Mechanism for Developing Supramolecular Versatile Nanomaterials Based on The Biosynthetic Hybrid Amyloid-Resilin Protein.
    Wu J; Zhou L; Peng H; Wang Z; Wang Z; Keasling JD; Liu S; Zhou G; Ding S; Wang Q; Wang X; Chen X; Lang Y; Xia M; Guan X; Dong M; Zhou J; Chen J
    Adv Mater; 2024 Jan; 36(4):e2304364. PubMed ID: 37885340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale click-reactive scaffolds from peptide self-assembly.
    Guttenplan APM; Young LJ; Matak-Vinkovic D; Kaminski CF; Knowles TPJ; Itzhaki LS
    J Nanobiotechnology; 2017 Oct; 15(1):70. PubMed ID: 28985740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling Supramolecular Chiral Nanostructures by Self-Assembly of a Biomimetic β-Sheet-Rich Amyloidogenic Peptide.
    Sánchez-Ferrer A; Adamcik J; Handschin S; Hiew SH; Miserez A; Mezzenga R
    ACS Nano; 2018 Sep; 12(9):9152-9161. PubMed ID: 30106557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembly of Artificial Sweetener Aspartame Yields Amyloid-like Cytotoxic Nanostructures.
    Anand BG; Prajapati KP; Dubey K; Ahamad N; Shekhawat DS; Rath PC; Joseph GK; Kar K
    ACS Nano; 2019 May; 13(5):6033-6049. PubMed ID: 31021591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine-Generated Nanostructures Initiate Amyloid Cross-Seeding in Proteins Leading to a Lethal Aggregation Trap.
    Anand BG; Prajapati KP; Shekhawat DS; Kar K
    Biochemistry; 2018 Sep; 57(35):5202-5209. PubMed ID: 30080038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization.
    Gazit E
    Chem Soc Rev; 2007 Aug; 36(8):1263-9. PubMed ID: 17619686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein nanofibrils and their use as building blocks of sustainable materials.
    Lendel C; Solin N
    RSC Adv; 2021 Dec; 11(62):39188-39215. PubMed ID: 35492452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leads and hurdles to sustainable microbial bioplastic production.
    Varghese S; Dhanraj ND; Rebello S; Sindhu R; Binod P; Pandey A; Jisha MS; Awasthi MK
    Chemosphere; 2022 Oct; 305():135390. PubMed ID: 35728665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Control of Amyloid Self-Assembly Using Protein Phase Transfer by Host-Guest Chemistry.
    Choi TS; Lee HH; Ko YH; Jeong KS; Kim K; Kim HI
    Sci Rep; 2017 Jul; 7(1):5710. PubMed ID: 28720896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prion soft amyloid core driven self-assembly of globular proteins into bioactive nanofibrils.
    Wang W; Navarro S; Azizyan RA; Baño-Polo M; Esperante SA; Kajava AV; Ventura S
    Nanoscale; 2019 Jul; 11(26):12680-12694. PubMed ID: 31237592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thioflavin T-Amyloid Hybrid Nanostructure for Biocatalytic Photosynthesis.
    Son G; Lee SH; Wang D; Park CB
    Small; 2018 Oct; 14(40):e1801396. PubMed ID: 30198161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review.
    Polman EMN; Gruter GM; Parsons JR; Tietema A
    Sci Total Environ; 2021 Jan; 753():141953. PubMed ID: 32896737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.