BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 38147547)

  • 21. Glycoproteins and Gal-GalNAc cause Cryptosporidium to switch from an invasive sporozoite to a replicative trophozoite.
    Edwinson A; Widmer G; McEvoy J
    Int J Parasitol; 2016 Jan; 46(1):67-74. PubMed ID: 26432292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Small and intermediate size structural RNAs in the unicellular parasite
    Li Y; Baptista RP; Mei X; Kissinger JC
    Microb Genom; 2022 May; 8(5):. PubMed ID: 35536609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Population genetics of Cryptosporidium parvum subtypes in cattle in Poland: the geographical change of strain prevalence and circulation over time.
    Kaupke A; Rzeżutka A
    BMC Vet Res; 2022 Jul; 18(1):263. PubMed ID: 35794543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative genome analysis of two Cryptosporidium parvum isolates with different host range.
    Widmer G; Lee Y; Hunt P; Martinelli A; Tolkoff M; Bodi K
    Infect Genet Evol; 2012 Aug; 12(6):1213-21. PubMed ID: 22522000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The transcriptome of Cryptosporidium oocysts and intracellular stages.
    Matos LVS; McEvoy J; Tzipori S; Bresciani KDS; Widmer G
    Sci Rep; 2019 May; 9(1):7856. PubMed ID: 31133645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Live imaging of the Cryptosporidium parvum life cycle reveals direct development of male and female gametes from type I meronts.
    English ED; Guérin A; Tandel J; Striepen B
    PLoS Biol; 2022 Apr; 20(4):e3001604. PubMed ID: 35436284
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On-target inhibition of Cryptosporidium parvum by nitazoxanide (NTZ) and paclitaxel (PTX) validated using a novel MDR1-transgenic host cell model and algorithms to quantify the effect on the parasite target.
    Yang B; Yan Y; Wang D; Zhang Y; Yin J; Zhu G
    PLoS Negl Trop Dis; 2023 Mar; 17(3):e0011217. PubMed ID: 36972284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bicyclic azetidines kill the diarrheal pathogen
    Vinayak S; Jumani RS; Miller P; Hasan MM; McLeod BI; Tandel J; Stebbins EE; Teixeira JE; Borrel J; Gonse A; Zhang M; Yu X; Wernimont A; Walpole C; Eckley S; Love MS; McNamara CW; Sharma M; Sharma A; Scherer CA; Kato N; Schreiber SL; Melillo B; Striepen B; Huston CD; Comer E
    Sci Transl Med; 2020 Sep; 12(563):. PubMed ID: 32998973
    [No Abstract]   [Full Text] [Related]  

  • 29. Mass Spectrometry Imaging of In Vitro
    Anschütz NH; Gerbig S; Ghezellou P; Silva LMR; Vélez JD; Hermosilla CR; Taubert A; Spengler B
    Biomolecules; 2023 Jul; 13(8):. PubMed ID: 37627264
    [No Abstract]   [Full Text] [Related]  

  • 30. Labeling surface epitopes to identify Cryptosporidium life stages using a scanning electron microscopy-based immunogold approach.
    Edwards H; Thompson RC; Koh WH; Clode PL
    Mol Cell Probes; 2012 Feb; 26(1):21-8. PubMed ID: 22100878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of new variable number tandem repeat loci in multiple Cryptosporidium parvum genomes for the surveillance and investigation of outbreaks of cryptosporidiosis.
    Pérez-Cordón G; Robinson G; Nader J; Chalmers RM
    Exp Parasitol; 2016 Oct; 169():119-28. PubMed ID: 27523797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of CpCaM, a protein potentially involved in the growth of Cryptosporidium parvum.
    Lai P; Yang X; Li YH; Yin YL; Yao Q; Huang S; Fan YY; Song JK; Zhao GH
    Parasitol Res; 2023 Apr; 122(4):989-996. PubMed ID: 36879147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MiR-3976 regulates HCT-8 cell apoptosis and parasite burden by targeting BCL2A1 in response to Cryptosporidium parvum infection.
    Li J; Sun L; Xie F; Shao T; Wu S; Li X; Zhang L; Wang R
    Parasit Vectors; 2023 Jul; 16(1):221. PubMed ID: 37415254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of Cryptosporidium parvum in a Red-Eared Slider Turtle (Trachemys scripta elegans), a Noted Invasive Alien Species, Captured in a Rural Aquatic Ecosystem in Eastern Poland.
    Rzeżutka A; Kaupke A; Gorzkowski B
    Acta Parasitol; 2020 Sep; 65(3):768-773. PubMed ID: 32141020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cryptic parasite revealed improved prospects for treatment and control of human cryptosporidiosis through advanced technologies.
    Jex AR; Smith HV; Nolan MJ; Campbell BE; Young ND; Cantacessi C; Gasser RB
    Adv Parasitol; 2011; 77():141-73. PubMed ID: 22137584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genotyping of Cryptosporidium parvum with microsatellite markers.
    Widmer G; Feng X; Tanriverdi S
    Methods Mol Biol; 2004; 268():177-87. PubMed ID: 15156029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum.
    Vinayak S; Pawlowic MC; Sateriale A; Brooks CF; Studstill CJ; Bar-Peled Y; Cipriano MJ; Striepen B
    Nature; 2015 Jul; 523(7561):477-80. PubMed ID: 26176919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of Long Non-Coding RNA in
    Li Y; Baptista RP; Sateriale A; Striepen B; Kissinger JC
    Front Cell Infect Microbiol; 2020; 10():608298. PubMed ID: 33520737
    [No Abstract]   [Full Text] [Related]  

  • 39. Comparative genetic diversity of
    Garcia-R JC; Cox MP; Hayman DTS
    Parasitology; 2020 Nov; 147(13):1532-1537. PubMed ID: 32772945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of CpSUB1, a subtilisin-like protease, in Cryptosporidium parvum infection in vitro.
    Wanyiri JW; Techasintana P; O'Connor RM; Blackman MJ; Kim K; Ward HD
    Eukaryot Cell; 2009 Apr; 8(4):470-7. PubMed ID: 19168760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.