These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38147650)

  • 1. Bubbles in Porous Electrodes for Alkaline Water Electrolysis.
    Wu R; Hu Z; Zhang H; Wang J; Qin C; Zhou Y
    Langmuir; 2024 Jan; 40(1):721-733. PubMed ID: 38147650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ni electrodes with 3D-ordered surface structures for boosting bubble releasing toward high current density alkaline water splitting.
    Ma J; Yang M; Zhao G; Li Y; Liu B; Dang J; Gu J; Hu S; Yang F; Ouyang M
    Ultrason Sonochem; 2023 Jun; 96():106398. PubMed ID: 37156161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to Enhance Gas Removal from Porous Electrodes?
    Kadyk T; Bruce D; Eikerling M
    Sci Rep; 2016 Dec; 6():38780. PubMed ID: 28008914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bubble Formation at Porous Hydrophobic Surfaces.
    Ryan WL; Hemmingsen EA
    J Colloid Interface Sci; 1998 Jan; 197(1):101-7. PubMed ID: 9466849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient All-3D-Printed Electrolyzer toward Ultrastable Water Electrolysis.
    Xu X; Fu G; Wang Y; Cao Q; Xun Y; Li C; Guan C; Huang W
    Nano Lett; 2023 Jan; 23(2):629-636. PubMed ID: 36634273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore-scale Ostwald ripening of gas bubbles in the presence of oil and water in porous media.
    Singh D; Friis HA; Jettestuen E; Helland JO
    J Colloid Interface Sci; 2023 Oct; 647():331-343. PubMed ID: 37267796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic behavior of bubbles at gas-evolving electrode in ultrasonic field during water electrolysis.
    Cho KM; Deshmukh PR; Shin WG
    Ultrason Sonochem; 2021 Dec; 80():105796. PubMed ID: 34678597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring 3D-Printed Electrodes for Enhanced Water Splitting.
    Márquez RA; Kawashima K; Son YJ; Rose R; Smith LA; Miller N; Carrasco Jaim OA; Celio H; Mullins CB
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42153-42170. PubMed ID: 36084243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving electrokinetic microdevice stability by controlling electrolysis bubbles.
    Lee HY; Barber C; Minerick AR
    Electrophoresis; 2014 Jul; 35(12-13):1782-9. PubMed ID: 24648277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitigating Bubble Traffic in Gas-Evolving Electrodes via Spinodally Derived Architectures.
    Gross SJ; McDevitt KM; Mumm DR; Mohraz A
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8528-8537. PubMed ID: 33555849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arrays of Microscale Linear Ridges with Self-Cleaning Functionality for the Oxygen Evolution Reaction.
    Taylor AK; Mou T; Sonea A; Chen J; Yee BB; Gates BD
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2399-2413. PubMed ID: 33405506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrolysis-Driven and Pressure-Controlled Diffusive Growth of Successive Bubbles on Microstructured Surfaces.
    van der Linde P; Moreno Soto Á; Peñas-López P; Rodríguez-Rodríguez J; Lohse D; Gardeniers H; van der Meer D; Fernández Rivas D
    Langmuir; 2017 Nov; 33(45):12873-12886. PubMed ID: 29041778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Bubbles on Electrochemically Active Surface Area of Microtextured Gas-Evolving Electrodes.
    Lake JR; Soto ÁM; Varanasi KK
    Langmuir; 2022 Mar; 38(10):3276-3283. PubMed ID: 35229608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Penetration of a bubble through porous membranes with different wettabilities.
    Park J; Ryu J; Lee SJ
    Soft Matter; 2019 Jul; 15(29):5819-5826. PubMed ID: 31184354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibuoyancy and Unidirectional Gas Evolution by Janus Electrodes with Asymmetric Wettability.
    Sheng S; Shi B; Wang C; Luo L; Lin X; Li P; Chen F; Shang Z; Meng H; Kuang Y; Lin WF; Sun X
    ACS Appl Mater Interfaces; 2020 May; 12(20):23627-23634. PubMed ID: 32348671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the Formation of Gas Bubbles inside the Pores of Reactive Electrochemical Membranes in the Process of the Anodic Oxidation of Organic Compounds.
    Mareev S; Skolotneva E; Cretin M; Nikonenko V
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34067406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh hydrogen evolution performance of under-water "superaerophobic" MoS₂ nanostructured electrodes.
    Lu Z; Zhu W; Yu X; Zhang H; Li Y; Sun X; Wang X; Wang H; Wang J; Luo J; Lei X; Jiang L
    Adv Mater; 2014 May; 26(17):2683-7, 2615. PubMed ID: 24488883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Bubble-Diode" Breathable Electrodes for Fast Gas Transport.
    He Y; Tan P
    Chemistry; 2024 Feb; 30(11):e202303477. PubMed ID: 38091241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing Gas Bubble Escape Rate for Water Splitting with Nonwoven Stainless Steel Fabrics.
    Wang L; Huang X; Jiang S; Li M; Zhang K; Yan Y; Zhang H; Xue JM
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40281-40289. PubMed ID: 29098849
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Hu L; Yang Y; Fu Q; Zhang L; Zhu X; Li J; Liao Q
    Environ Sci Technol; 2023 Apr; 57(15):6159-6168. PubMed ID: 37023464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.