These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38147756)

  • 1. Distribution and accumulation of Cadmium in different trophic levels affecting Serangium japonicum, the predatory beetle of whitefly Bemisia tabaci, biologically, physiologically and genetically: An experimental study.
    Khan MM; Fan ZY; Wang XM; Qiu BL
    J Hazard Mater; 2024 Mar; 465():133244. PubMed ID: 38147756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in life history parameters and transcriptome profile of Serangium japonicum associated with feeding on natural prey (Bemisia tabaci) and alternate host (Corcyra cephalonica eggs).
    Ali S; Peng J; Liang JF; Huang C; Xie YH; Wang X
    BMC Genomics; 2023 Mar; 24(1):112. PubMed ID: 36918764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lethal effect of imidacloprid on the coccinellid predator Serangium japonicum and sublethal effects on predator voracity and on functional response to the whitefly Bemisia tabaci.
    He Y; Zhao J; Zheng Y; Desneux N; Wu K
    Ecotoxicology; 2012 Jul; 21(5):1291-300. PubMed ID: 22447470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oviposition preference and adult performance of the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae): effect of leaf microstructure associated with ladybeetle attachment ability.
    Yao FL; Lin S; Wang LX; Mei WJ; Monticelli LS; Zheng Y; Desneux N; He YX; Weng QY
    Pest Manag Sci; 2021 Jan; 77(1):113-125. PubMed ID: 32776685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicities of destruxins against Bemisia tabaci and its natural enemy, Serangium japonicum.
    Hu QB; An XC; Jin FL; Freed S; Ren SX
    Toxicon; 2009 Jan; 53(1):115-21. PubMed ID: 19000916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Feeding behavior of Serangium japonicum (Coleoptera: Coccinellidae), a predator of Bemisia tabaci (Homoptera: Aleyrodidae)].
    Yao S; Ren S; Huang Z
    Ying Yong Sheng Tai Xue Bao; 2005 Mar; 16(3):509-13. PubMed ID: 15943367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host Plant Species of
    Tian M; Xu L; Jiang J; Zhang S; Liu T; Xu Y
    Insects; 2020 Jul; 11(7):. PubMed ID: 32664559
    [No Abstract]   [Full Text] [Related]  

  • 8. Efficiency of plant induced volatiles in attracting Encarsia formosa and Serangium japonicum, two dominant natural enemies of whitefly Bemisia tabaci in China.
    Li SJ; Ren SL; Xue X; Ren SX; Cuthbertson AG; van Dam NM; Qiu BL
    Pest Manag Sci; 2014 Oct; 70(10):1604-10. PubMed ID: 24488542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of elevated CO
    Li N; Li Y; Zhang S; Fan Y; Liu T
    J Insect Physiol; 2017 Nov; 103():91-97. PubMed ID: 29056516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lethal and sublethal effects of thiamethoxam on the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae) through different exposure routes.
    Yao FL; Zheng Y; Zhao JW; Desneux N; He YX; Weng QY
    Chemosphere; 2015 Jun; 128():49-55. PubMed ID: 25655818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of the five biological parameters of cotton whitefly Bemisia tabaci and silverleaf whitefly B. argentifolii bellows and perring reared on cotton under laboratory condition.
    Samih MA; Izadi H; Mahdian K
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):613-9. PubMed ID: 17385531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaccumulation of cadmium, lead, and zinc in agriculture-based insect food chains.
    Butt A; Qurat-Ul-Ain ; Rehman K; Khan MX; Hesselberg T
    Environ Monit Assess; 2018 Nov; 190(12):698. PubMed ID: 30397822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecotoxicity of Cadmium along the Soil-Cotton Plant-Cotton Bollworm System: Biotransfer, Trophic Accumulation, Plant Growth, Induction of Insect Detoxification Enzymes, and Immunocompetence.
    Shen R; Hussain K; Liu N; Li J; Yu J; Zhao J; Li W; Yang S
    J Agric Food Chem; 2024 Jun; 72(25):14326-14336. PubMed ID: 38870410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Hu YH; Liu Y; Wei L; Chen HT
    G3 (Bethesda); 2020 Jan; 10(1):247-254. PubMed ID: 31722887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metals transported through a multi-trophic food chain influence the energy metabolism and immune responses of Cryptolaemus montrouzieri.
    Du C; Wu J; Bashir MH; Shaukat M; Ali S
    Ecotoxicology; 2019 May; 28(4):422-428. PubMed ID: 30868349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the antioxidative defense system.
    Zhu Y; Wang H; Lv X; Zhang Y; Wang W
    Sci Rep; 2020 Nov; 10(1):20112. PubMed ID: 33208871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental responses of Cryptolaemus montrouzieri to heavy metals transferred across multi-trophic food chain.
    Sang W; Xu J; Bashir MH; Ali S
    Chemosphere; 2018 Aug; 205():690-697. PubMed ID: 29729623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sexual differences in above- and belowground herbivore resistance between male and female poplars as affected by soil cadmium stress.
    Lin T; Tang J; He F; Chen G; Shi Y; Wang X; Han S; Li S; Zhu T; Chen L
    Sci Total Environ; 2022 Jan; 803():150081. PubMed ID: 34500283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.