These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. ABT-MPNN: an atom-bond transformer-based message-passing neural network for molecular property prediction. Liu C; Sun Y; Davis R; Cardona ST; Hu P J Cheminform; 2023 Feb; 15(1):29. PubMed ID: 36843022 [TBL] [Abstract][Full Text] [Related]
4. When Do Quantum Mechanical Descriptors Help Graph Neural Networks to Predict Chemical Properties? Li SC; Wu H; Menon A; Spiekermann KA; Li YP; Green WH J Am Chem Soc; 2024 Aug; 146(33):23103-23120. PubMed ID: 39106041 [TBL] [Abstract][Full Text] [Related]
6. Prediction of Reaction Yield for Buchwald-Hartwig Cross-coupling Reactions Using Deep Learning. Sato A; Miyao T; Funatsu K Mol Inform; 2022 Feb; 41(2):e2100156. PubMed ID: 34585854 [TBL] [Abstract][Full Text] [Related]
7. ReaxFF-MPNN machine learning potential: a combination of reactive force field and message passing neural networks. Xue LY; Guo F; Wen YS; Feng SQ; Huang XN; Guo L; Li HS; Cui SX; Zhang GQ; Wang QL Phys Chem Chem Phys; 2021 Sep; 23(35):19457-19464. PubMed ID: 34524283 [TBL] [Abstract][Full Text] [Related]
8. Application of message passing neural networks for molecular property prediction. Tang M; Li B; Chen H Curr Opin Struct Biol; 2023 Aug; 81():102616. PubMed ID: 37267824 [TBL] [Abstract][Full Text] [Related]
9. DeepDelta: predicting ADMET improvements of molecular derivatives with deep learning. Fralish Z; Chen A; Skaluba P; Reker D J Cheminform; 2023 Oct; 15(1):101. PubMed ID: 37885017 [TBL] [Abstract][Full Text] [Related]
13. Knowledge-Embedded Message-Passing Neural Networks: Improving Molecular Property Prediction with Human Knowledge. Hasebe T ACS Omega; 2021 Oct; 6(42):27955-27967. PubMed ID: 34722995 [TBL] [Abstract][Full Text] [Related]
14. The message passing neural networks for chemical property prediction on SMILES. Jo J; Kwak B; Choi HS; Yoon S Methods; 2020 Jul; 179():65-72. PubMed ID: 32445695 [TBL] [Abstract][Full Text] [Related]
15. Integrating concept of pharmacophore with graph neural networks for chemical property prediction and interpretation. Kong Y; Zhao X; Liu R; Yang Z; Yin H; Zhao B; Wang J; Qin B; Yan A J Cheminform; 2022 Aug; 14(1):52. PubMed ID: 35927691 [TBL] [Abstract][Full Text] [Related]
16. Building Chemical Property Models for Energetic Materials from Small Datasets Using a Transfer Learning Approach. Lansford JL; Barnes BC; Rice BM; Jensen KF J Chem Inf Model; 2022 Nov; 62(22):5397-5410. PubMed ID: 36240441 [TBL] [Abstract][Full Text] [Related]
17. Machine Learning of Reaction Properties via Learned Representations of the Condensed Graph of Reaction. Heid E; Green WH J Chem Inf Model; 2022 May; 62(9):2101-2110. PubMed ID: 34734699 [TBL] [Abstract][Full Text] [Related]
18. Performance and robustness of small molecule retention time prediction with molecular graph neural networks in industrial drug discovery campaigns. Vik D; Pii D; Mudaliar C; Nørregaard-Madsen M; Kontijevskis A Sci Rep; 2024 Apr; 14(1):8733. PubMed ID: 38627535 [TBL] [Abstract][Full Text] [Related]
19. TrimNet: learning molecular representation from triplet messages for biomedicine. Li P; Li Y; Hsieh CY; Zhang S; Liu X; Liu H; Song S; Yao X Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33147620 [TBL] [Abstract][Full Text] [Related]
20. Flattening the curve-How to get better results with small deep-mutational-scanning datasets. Wirnsberger G; Pritišanac I; Oberdorfer G; Gruber K Proteins; 2024 Jul; 92(7):886-902. PubMed ID: 38501649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]