These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38147877)
1. Performance and Analysis of the Alchemical Transfer Method for Binding-Free-Energy Predictions of Diverse Ligands. Chen L; Wu Y; Wu C; Silveira A; Sherman W; Xu H; Gallicchio E J Chem Inf Model; 2024 Jan; 64(1):250-264. PubMed ID: 38147877 [TBL] [Abstract][Full Text] [Related]
2. Relative Binding Free Energy Calculations for Ligands with Diverse Scaffolds with the Alchemical Transfer Method. Azimi S; Khuttan S; Wu JZ; Pal RK; Gallicchio E J Chem Inf Model; 2022 Jan; 62(2):309-323. PubMed ID: 34990555 [TBL] [Abstract][Full Text] [Related]
3. Relative Binding Free Energy between Chemically Distant Compounds Using a Bidirectional Nonequilibrium Approach. Procacci P J Chem Theory Comput; 2022 Jun; 18(6):4014-4026. PubMed ID: 35642423 [TBL] [Abstract][Full Text] [Related]
4. Alchemical Transfer Approach to Absolute Binding Free Energy Estimation. Wu JZ; Azimi S; Khuttan S; Deng N; Gallicchio E J Chem Theory Comput; 2021 Jun; 17(6):3309-3319. PubMed ID: 33983730 [TBL] [Abstract][Full Text] [Related]
5. Validation of the Alchemical Transfer Method for the Estimation of Relative Binding Affinities of Molecular Series. Sabanés Zariquiey F; Pérez A; Majewski M; Gallicchio E; De Fabritiis G J Chem Inf Model; 2023 Apr; 63(8):2438-2444. PubMed ID: 37042797 [TBL] [Abstract][Full Text] [Related]
6. To Design Scalable Free Energy Perturbation Networks, Optimal Is Not Enough. Pitman M; Hahn DF; Tresadern G; Mobley DL J Chem Inf Model; 2023 Mar; 63(6):1776-1793. PubMed ID: 36878475 [TBL] [Abstract][Full Text] [Related]
7. Large Scale Study of Ligand-Protein Relative Binding Free Energy Calculations: Actionable Predictions from Statistically Robust Protocols. Bhati AP; Coveney PV J Chem Theory Comput; 2022 Apr; 18(4):2687-2702. PubMed ID: 35293737 [TBL] [Abstract][Full Text] [Related]
8. Identifying and Overcoming the Sampling Challenges in Relative Binding Free Energy Calculations of a Model Protein:Protein Complex. Zhang I; Rufa DA; Pulido I; Henry MM; Rosen LE; Hauser K; Singh S; Chodera JD J Chem Theory Comput; 2023 Aug; 19(15):4863-4882. PubMed ID: 37450482 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive, Open-Source, and Automated Workflow for Multisite λ-Dynamics in Lead Optimization. Hu R; Zhang J; Kang Y; Wang Z; Pan P; Deng Y; Hsieh CY; Hou T J Chem Theory Comput; 2024 Feb; 20(3):1465-1478. PubMed ID: 38300792 [TBL] [Abstract][Full Text] [Related]
10. Protein-Ligand Binding Free Energy Calculations with FEP. Wang L; Chambers J; Abel R Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905 [TBL] [Abstract][Full Text] [Related]
11. Improvements in Precision of Relative Binding Free Energy Calculations Afforded by the Alchemical Enhanced Sampling (ACES) Approach. Tsai HC; Xu J; Guo Z; Yi Y; Tian C; Que X; Giese T; Lee TS; York DM; Ganguly A; Pan A J Chem Inf Model; 2024 Sep; 64(18):7046-7055. PubMed ID: 39225694 [TBL] [Abstract][Full Text] [Related]
12. A Method for Treating Significant Conformational Changes in Alchemical Free Energy Simulations of Protein-Ligand Binding. Liao J; Sergeeva AP; Harder ED; Wang L; Sampson JM; Honig B; Friesner RA J Chem Theory Comput; 2024 Oct; 20(19):8609-8623. PubMed ID: 39331379 [TBL] [Abstract][Full Text] [Related]
13. Alchemical Free Energy Methods Applied to Complexes of the First Bromodomain of BRD4. Guest EE; Cervantes LF; Pickett SD; Brooks CL; Hirst JD J Chem Inf Model; 2022 Mar; 62(6):1458-1470. PubMed ID: 35258972 [TBL] [Abstract][Full Text] [Related]
14. Implementation of the QUBE Force Field in SOMD for High-Throughput Alchemical Free-Energy Calculations. Nelson L; Bariami S; Ringrose C; Horton JT; Kurdekar V; Mey ASJS; Michel J; Cole DJ J Chem Inf Model; 2021 May; 61(5):2124-2130. PubMed ID: 33886305 [TBL] [Abstract][Full Text] [Related]
15. Broadening the Scope of Binding Free Energy Calculations Using a Separated Topologies Approach. Baumann HM; Dybeck E; McClendon CL; Pickard FC; Gapsys V; Pérez-Benito L; Hahn DF; Tresadern G; Mathiowetz AM; Mobley DL J Chem Theory Comput; 2023 Aug; 19(15):5058-5076. PubMed ID: 37487138 [TBL] [Abstract][Full Text] [Related]
16. Alchemical Free Energy Estimators and Molecular Dynamics Engines: Accuracy, Precision, and Reproducibility. Wade AD; Bhati AP; Wan S; Coveney PV J Chem Theory Comput; 2022 Jun; 18(6):3972-3987. PubMed ID: 35609233 [TBL] [Abstract][Full Text] [Related]
17. Current State of Open Source Force Fields in Protein-Ligand Binding Affinity Predictions. Hahn DF; Gapsys V; de Groot BL; Mobley DL; Tresadern G J Chem Inf Model; 2024 Jul; 64(13):5063-5076. PubMed ID: 38895959 [TBL] [Abstract][Full Text] [Related]
18. Ligand Binding Affinity Prediction for Membrane Proteins with Alchemical Free Energy Calculation Methods. Zhang H; Im W J Chem Inf Model; 2024 Jul; 64(14):5671-5679. PubMed ID: 38959405 [TBL] [Abstract][Full Text] [Related]
19. Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs. Harger M; Li D; Wang Z; Dalby K; Lagardère L; Piquemal JP; Ponder J; Ren P J Comput Chem; 2017 Sep; 38(23):2047-2055. PubMed ID: 28600826 [TBL] [Abstract][Full Text] [Related]
20. CHARMM-GUI Free Energy Calculator for Practical Ligand Binding Free Energy Simulations with AMBER. Zhang H; Kim S; Giese TJ; Lee TS; Lee J; York DM; Im W J Chem Inf Model; 2021 Sep; 61(9):4145-4151. PubMed ID: 34521199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]