These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 38147916)
1. Bidirectional extracellular electron transfer pathways of Geobacter sulfurreducens biofilms: Molecular insights into extracellular polymeric substances. Yang G; Xia X; Nie W; Qin B; Hou T; Lin A; Yao S; Zhuang L Environ Res; 2024 Mar; 245():118038. PubMed ID: 38147916 [TBL] [Abstract][Full Text] [Related]
2. Disparity of Cytochrome Utilization in Anodic and Cathodic Extracellular Electron Transfer Pathways of Heidary N; Kornienko N; Kalathil S; Fang X; Ly KH; Greer HF; Reisner E J Am Chem Soc; 2020 Mar; 142(11):5194-5203. PubMed ID: 32066233 [TBL] [Abstract][Full Text] [Related]
3. Anode potentials regulate Geobacter biofilms: New insights from the composition and spatial structure of extracellular polymeric substances. Yang G; Huang L; Yu Z; Liu X; Chen S; Zeng J; Zhou S; Zhuang L Water Res; 2019 Aug; 159():294-301. PubMed ID: 31102858 [TBL] [Abstract][Full Text] [Related]
4. Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells. Stöckl M; Teubner NC; Holtmann D; Mangold KM; Sand W ACS Appl Mater Interfaces; 2019 Mar; 11(9):8961-8968. PubMed ID: 30730701 [TBL] [Abstract][Full Text] [Related]
5. Extraction and characterization of stratified extracellular polymeric substances in Geobacter biofilms. Yang G; Lin J; Zeng EY; Zhuang L Bioresour Technol; 2019 Mar; 276():119-126. PubMed ID: 30616210 [TBL] [Abstract][Full Text] [Related]
6. Redox potential-induced regulation of extracellular polymeric substances in an electroactive mixed community biofilm. Guo J; Yang G; Zhuang Z; Mai Q; Zhuang L Sci Total Environ; 2021 Nov; 797():149207. PubMed ID: 34311380 [TBL] [Abstract][Full Text] [Related]
7. Physiological potential of extracellular polysaccharide in promoting Geobacter biofilm formation and extracellular electron transfer. Zhuang Z; Yang G; Mai Q; Guo J; Liu X; Zhuang L Sci Total Environ; 2020 Nov; 741():140365. PubMed ID: 32610234 [TBL] [Abstract][Full Text] [Related]
8. Deciphering the role of extracellular polymeric substances in the regulation of microbial extracellular electron transfer under low concentrations of tetracycline exposure: Insights from transcriptomic analysis. Zhu Q; Hou H; Wu Y; Hu J; Liu B; Liang S; Xiao K; Yu W; Yuan S; Yang J; Su X Sci Total Environ; 2022 Sep; 838(Pt 2):156176. PubMed ID: 35613646 [TBL] [Abstract][Full Text] [Related]
9. Exopolysaccharides matrix affects the process of extracellular electron transfer in electroactive biofilm. Zhuang Z; Yang G; Zhuang L Sci Total Environ; 2022 Feb; 806(Pt 3):150713. PubMed ID: 34606863 [TBL] [Abstract][Full Text] [Related]
10. Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Xiao Y; Zhang E; Zhang J; Dai Y; Yang Z; Christensen HEM; Ulstrup J; Zhao F Sci Adv; 2017 Jul; 3(7):e1700623. PubMed ID: 28695213 [TBL] [Abstract][Full Text] [Related]
11. GSU1771 regulates extracellular electron transfer and electroactive biofilm formation in Geobacter sulfurreducens: Genetic and electrochemical characterization. Hernández-Eligio A; Huerta-Miranda GA; Martínez-Bahena S; Castrejón-López D; Miranda-Hernández M; Juárez K Bioelectrochemistry; 2022 Jun; 145():108101. PubMed ID: 35334296 [TBL] [Abstract][Full Text] [Related]
12. Nutrient limitation regulates the properties of extracellular electron transfer and hydraulic shear resistance of electroactive biofilm. Wang YR; Li KW; Wang YX; Liu XL; Mu Y Environ Res; 2022 Sep; 212(Pt C):113408. PubMed ID: 35561821 [TBL] [Abstract][Full Text] [Related]
13. Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of Fernandes AP; Nunes TC; Paquete CM; Salgueiro CA Biochem J; 2017 Feb; 474(5):797-808. PubMed ID: 28093471 [No Abstract] [Full Text] [Related]
14. Light exposure interferes with electroactive biofilm enrichment and reduces extracellular electron transfer efficiency. Sui M; Li Y; Jiang Y; Zhang Y; Wang L; Zhang W; Wang X Water Res; 2021 Jan; 188():116512. PubMed ID: 33161361 [TBL] [Abstract][Full Text] [Related]
15. Autotrophic nitrate reduction to ammonium via reverse electron transfer in Geobacter dominated biofilm. Wu Y; Du Q; Wan Y; Zhao Q; Li N; Wang X Biosens Bioelectron; 2022 Nov; 215():114578. PubMed ID: 35868120 [TBL] [Abstract][Full Text] [Related]
16. Combined spectroelectrochemical and proteomic characterizations of bidirectional Alcaligenes faecalis-electrode electron transfer. Yu L; Yuan Y; Rensing C; Zhou S Biosens Bioelectron; 2018 May; 106():21-28. PubMed ID: 29414084 [TBL] [Abstract][Full Text] [Related]
17. The robustness of porin-cytochrome gene clusters from Zhuo S; Jiang Y; Qi L; Hu Y; Jiang Z; Dong Y; Shi L mBio; 2024 Sep; 15(9):e0058024. PubMed ID: 39092920 [TBL] [Abstract][Full Text] [Related]
19. Influence of the major pilA transcriptional regulator in electrochemical responses of Geobacter sulfureducens PilR-deficient mutant biofilm formed on FTO electrodes. Huerta-Miranda GA; Arroyo-Escoto AI; Burgos X; Juárez K; Miranda-Hernández M Bioelectrochemistry; 2019 Jun; 127():145-153. PubMed ID: 30825658 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomic, Proteomic, and Bioelectrochemical Characterization of an Exoelectrogen Cai X; Huang L; Yang G; Yu Z; Wen J; Zhou S Front Microbiol; 2018; 9():1075. PubMed ID: 29963016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]