These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38148200)

  • 1. Mutation of MYB36 affects isoflavonoid metabolism, growth, and stress responses in Lotus japonicus.
    Monje-Rueda MD; Pal'ove-Balang P; Trush K; Márquez AJ; Betti M; García-Calderón M
    Physiol Plant; 2023; 175(6):e14084. PubMed ID: 38148200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription factors of Lotus: regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity.
    Shelton D; Stranne M; Mikkelsen L; Pakseresht N; Welham T; Hiraka H; Tabata S; Sato S; Paquette S; Wang TL; Martin C; Bailey P
    Plant Physiol; 2012 Jun; 159(2):531-47. PubMed ID: 22529285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genistein-Specific G6DT Gene for the Inducible Production of Wighteone in Lotus japonicus.
    Liu J; Jiang W; Xia Y; Wang X; Shen G; Pang Y
    Plant Cell Physiol; 2018 Jan; 59(1):128-141. PubMed ID: 29140457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. APETALA 2 transcription factor CBX1 is a regulator of mycorrhizal symbiosis and growth of Lotus japonicus.
    Liu F; Xu Y; Wang H; Zhou Y; Cheng B; Li X
    Plant Cell Rep; 2020 Apr; 39(4):445-455. PubMed ID: 31912218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flavonoids and Isoflavonoids Biosynthesis in the Model Legume
    García-Calderón M; Pérez-Delgado CM; Palove-Balang P; Betti M; Márquez AJ
    Plants (Basel); 2020 Jun; 9(6):. PubMed ID: 32575698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of isoflavonoid biosynthesis in Lotus japonicus after UV-B irradiation.
    Kaducová M; Monje-Rueda MD; García-Calderón M; Pérez-Delgado CM; Eliášová A; Gajdošová S; Petruľová V; Betti M; Márquez AJ; Paľove-Balang P
    J Plant Physiol; 2019 May; 236():88-95. PubMed ID: 30939333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization.
    Babuin MF; Campestre MP; Rocco R; Bordenave CD; Escaray FJ; Antonelli C; Calzadilla P; Gárriz A; Serna E; Carrasco P; Ruiz OA; Menendez AB
    PLoS One; 2014; 9(5):e97106. PubMed ID: 24835559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress.
    Díaz P; Betti M; Sánchez DH; Udvardi MK; Monza J; Márquez AJ
    New Phytol; 2010 Dec; 188(4):1001-13. PubMed ID: 20796214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lotus japonicus Triterpenoid Profile and Characterization of the CYP716A51 and LjCYP93E1 Genes Involved in Their Biosynthesis In Planta.
    Suzuki H; Fukushima EO; Shimizu Y; Seki H; Fujisawa Y; Ishimoto M; Osakabe K; Osakabe Y; Muranaka T
    Plant Cell Physiol; 2019 Nov; 60(11):2496-2509. PubMed ID: 31418782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase.
    García-Calderón M; Pons-Ferrer T; Mrázova A; Pal'ove-Balang P; Vilková M; Pérez-Delgado CM; Vega JM; Eliášová A; Repčák M; Márquez AJ; Betti M
    Front Plant Sci; 2015; 6():760. PubMed ID: 26442073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus.
    Du Y; Luo S; Zhao J; Feng Z; Chen X; Ren W; Liu X; Wang Z; Yu L; Li W; Qu Y; Liu J; Zhou L
    BMC Plant Biol; 2021 Nov; 21(1):510. PubMed ID: 34732128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus.
    Mori N; Nomura T; Akiyama K
    Planta; 2020 Jan; 251(2):40. PubMed ID: 31907631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant growth-promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus.
    Masunaka A; Hyakumachi M; Takenaka S
    Microbes Environ; 2011; 26(2):128-34. PubMed ID: 21502738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway.
    Wang Y; Hua W; Wang J; Hannoufa A; Xu Z; Wang Z
    Mol Genet Genomics; 2013 Apr; 288(3-4):131-9. PubMed ID: 23463169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of
    Liu J; Liu L; Tian L; Xu S; Wu G; Jiang H; Chen Y
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of AP2/ERF family genes from Lotus corniculatus shows LcERF054 enhances salt tolerance.
    Sun ZM; Zhou ML; Xiao XG; Tang YX; Wu YM
    Funct Integr Genomics; 2014 Sep; 14(3):453-66. PubMed ID: 24777608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy.
    Carbonnel S; Torabi S; Griesmann M; Bleek E; Tang Y; Buchka S; Basso V; Shindo M; Boyer FD; Wang TL; Udvardi M; Waters MT; Gutjahr C
    PLoS Genet; 2020 Dec; 16(12):e1009249. PubMed ID: 33370251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lotus SHAGGY-like kinase 1 is required to suppress nodulation in Lotus japonicus.
    Garagounis C; Tsikou D; Plitsi PK; Psarrakou IS; Avramidou M; Stedel C; Anagnostou M; Georgopoulou ME; Papadopoulou KK
    Plant J; 2019 Apr; 98(2):228-242. PubMed ID: 30570783
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Wei P; Lv Y; Guang Q; Han J; Wang Y; Wang X; Song L
    Plant Signal Behav; 2023 Dec; 18(1):2218670. PubMed ID: 37288791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism.
    Vriet C; Welham T; Brachmann A; Pike M; Pike J; Perry J; Parniske M; Sato S; Tabata S; Smith AM; Wang TL
    Plant Physiol; 2010 Oct; 154(2):643-55. PubMed ID: 20699404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.