These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38148200)

  • 21. A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism.
    Vriet C; Welham T; Brachmann A; Pike M; Pike J; Perry J; Parniske M; Sato S; Tabata S; Smith AM; Wang TL
    Plant Physiol; 2010 Oct; 154(2):643-55. PubMed ID: 20699404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway.
    Suzuki S; Nishihara M; Nakatsuka T; Misawa N; Ogiwara I; Yamamura S
    Plant Cell Rep; 2007 Jul; 26(7):951-9. PubMed ID: 17265153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unveiling the Complexity of Red Clover (
    Shi K; Liu X; Pan X; Liu J; Gong W; Gong P; Cao M; Jia S; Wang Z
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of novel genes involved in phosphate accumulation in Lotus japonicus through Genome Wide Association mapping of root system architecture and anion content.
    Giovannetti M; Göschl C; Dietzen C; Andersen SU; Kopriva S; Busch W
    PLoS Genet; 2019 Dec; 15(12):e1008126. PubMed ID: 31856195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. micro RNA 172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules.
    Holt DB; Gupta V; Meyer D; Abel NB; Andersen SU; Stougaard J; Markmann K
    New Phytol; 2015 Oct; 208(1):241-56. PubMed ID: 25967282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis.
    Krokida A; Delis C; Geisler K; Garagounis C; Tsikou D; Peña-Rodríguez LM; Katsarou D; Field B; Osbourn AE; Papadopoulou KK
    New Phytol; 2013 Nov; 200(3):675-690. PubMed ID: 23909862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genes for asparagine metabolism in Lotus japonicus: differential expression and interconnection with photorespiration.
    García-Calderón M; Pérez-Delgado CM; Credali A; Vega JM; Betti M; Márquez AJ
    BMC Genomics; 2017 Oct; 18(1):781. PubMed ID: 29025409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A member of the ALOG gene family has a novel role in regulating nodulation in Lotus japonicus.
    Lei Y; Su S; He L; Hu X; Luo D
    J Integr Plant Biol; 2019 Apr; 61(4):463-477. PubMed ID: 30129698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical identification of 18-hydroxycarlactonoic acid as an LjMAX1 product and in planta conversion of its methyl ester to canonical and non-canonical strigolactones in Lotus japonicus.
    Mori N; Sado A; Xie X; Yoneyama K; Asami K; Seto Y; Nomura T; Yamaguchi S; Yoneyama K; Akiyama K
    Phytochemistry; 2020 Jun; 174():112349. PubMed ID: 32213359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MeJA-responsive bHLH transcription factor LjbHLH7 regulates cyanogenic glucoside biosynthesis in Lotus japonicus.
    Chen C; Liu F; Zhang K; Niu X; Zhao H; Liu Q; Georgiev MI; Xu X; Zhang X; Zhou M
    J Exp Bot; 2022 Apr; 73(8):2650-2665. PubMed ID: 35083483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptomic and metabolic changes associated with photorespiratory ammonium accumulation in the model legume Lotus japonicus.
    Pérez-Delgado CM; García-Calderón M; Sánchez DH; Udvardi MK; Kopka J; Márquez AJ; Betti M
    Plant Physiol; 2013 Aug; 162(4):1834-48. PubMed ID: 23743713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The ERN1 transcription factor gene is a target of the CCaMK/CYCLOPS complex and controls rhizobial infection in Lotus japonicus.
    Cerri MR; Wang Q; Stolz P; Folgmann J; Frances L; Katzer K; Li X; Heckmann AB; Wang TL; Downie JA; Klingl A; de Carvalho-Niebel F; Xie F; Parniske M
    New Phytol; 2017 Jul; 215(1):323-337. PubMed ID: 28503742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gibberellin controls the nodulation signaling pathway in Lotus japonicus.
    Maekawa T; Maekawa-Yoshikawa M; Takeda N; Imaizumi-Anraku H; Murooka Y; Hayashi M
    Plant J; 2009 Apr; 58(2):183-94. PubMed ID: 19121107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-cell RNA-seq of Lotus japonicus provide insights into identification and function of root cell types of legume.
    Sun Z; Jiang S; Wang D; Li L; Liu B; Ran Q; Hu L; Xiong J; Tang Y; Gu X; Wu Y; Liang Z
    J Integr Plant Biol; 2023 May; 65(5):1147-1152. PubMed ID: 36537698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The LORE1 insertion mutant resource.
    Małolepszy A; Mun T; Sandal N; Gupta V; Dubin M; Urbański D; Shah N; Bachmann A; Fukai E; Hirakawa H; Tabata S; Nadzieja M; Markmann K; Su J; Umehara Y; Soyano T; Miyahara A; Sato S; Hayashi M; Stougaard J; Andersen SU
    Plant J; 2016 Oct; 88(2):306-317. PubMed ID: 27322352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. cDNA cloning and biochemical characterization of S-adenosyl-L-methionine: 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferase, a critical enzyme of the legume isoflavonoid phytoalexin pathway.
    Akashi T; Sawada Y; Shimada N; Sakurai N; Aoki T; Ayabe S
    Plant Cell Physiol; 2003 Feb; 44(2):103-12. PubMed ID: 12610212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. cDNA macroarray analysis of gene expression in ineffective nodules induced on the Lotus japonicus sen1 mutant.
    Suganuma N; Yamamoto A; Itou A; Hakoyama T; Banba M; Hata S; Kawaguchi M; Kouchi H
    Mol Plant Microbe Interact; 2004 Nov; 17(11):1223-33. PubMed ID: 15553247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A shared gene drives lateral root development and root nodule symbiosis pathways in
    Soyano T; Shimoda Y; Kawaguchi M; Hayashi M
    Science; 2019 Nov; 366(6468):1021-1023. PubMed ID: 31754003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LAZY3 plays a pivotal role in positive root gravitropism in Lotus japonicus.
    Chen Y; Xu S; Tian L; Liu L; Huang M; Xu X; Song G; Wu P; Sato S; Jiang H; Wu G
    J Exp Bot; 2020 Jan; 71(1):168-177. PubMed ID: 31559427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative phosphoproteomic analyses provide evidence for extensive phosphorylation of regulatory proteins in the rhizobia-legume symbiosis.
    Zhang Z; Ke D; Hu M; Zhang C; Deng L; Li Y; Li J; Zhao H; Cheng L; Wang L; Yuan H
    Plant Mol Biol; 2019 Jun; 100(3):265-283. PubMed ID: 30989446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.