These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38148205)
1. The Brassica napus boron deficient inflorescence transcriptome resembles a wounding and infection response. Verwaaijen B; Alcock TD; Spitzer C; Liu Z; Fiebig A; Bienert MD; Bräutigam A; Bienert GP Physiol Plant; 2023; 175(6):e14088. PubMed ID: 38148205 [TBL] [Abstract][Full Text] [Related]
2. The boron transporter BnaC4.BOR1;1c is critical for inflorescence development and fertility under boron limitation in Brassica napus. Zhang Q; Chen H; He M; Zhao Z; Cai H; Ding G; Shi L; Xu F Plant Cell Environ; 2017 Sep; 40(9):1819-1833. PubMed ID: 28545156 [TBL] [Abstract][Full Text] [Related]
3. BnaA02.NIP6;1a encodes a boron transporter required for plant development under boron deficiency in Brassica napus. Song G; Li X; Munir R; Khan AR; Azhar W; Khan S; Gan Y Plant Physiol Biochem; 2021 Apr; 161():36-45. PubMed ID: 33561659 [TBL] [Abstract][Full Text] [Related]
4. Differential Alternative Splicing Genes in Response to Boron Deficiency in Gu J; Li W; Wang S; Zhang X; Coules A; Ding G; Xu F; Ren J; Lu C; Shi L Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30889858 [TBL] [Abstract][Full Text] [Related]
5. Circadian Rhythm and Nitrogen Metabolism Participate in the Response of Boron Deficiency in the Root of Liu L; Duan X; Xu H; Zhao P; Shi L; Xu F; Wang S Int J Mol Sci; 2024 Jul; 25(15):. PubMed ID: 39125892 [TBL] [Abstract][Full Text] [Related]
6. BnaA4.BOR2 contributes the tolerance of rapeseed to boron deficiency by improving the transport of boron from root to shoot. Liu W; Wang S; Ye X; Xu F Plant Physiol Biochem; 2024 Mar; 208():108508. PubMed ID: 38490152 [TBL] [Abstract][Full Text] [Related]
7. Microarray expression analysis of the main inflorescence in Brassica napus. Huang Y; Shi J; Tao Z; Zhang L; Liu Q; Wang X; Yang Q; Liu G; Wang H PLoS One; 2014; 9(7):e102024. PubMed ID: 25007212 [TBL] [Abstract][Full Text] [Related]
8. Proteomic alterations of Brassica napus root in response to boron deficiency. Wang Z; Wang Z; Shi L; Wang L; Xu F Plant Mol Biol; 2010 Oct; 74(3):265-78. PubMed ID: 20694506 [TBL] [Abstract][Full Text] [Related]
9. Identification and function characterization of BnaBOR4 genes reveal their potential for Brassica napus cultivation under high boron stress. Liu L; Luo Y; Ding G; Wang C; Cai H; Shi L; Xu F; Bao X; Wang S Ecotoxicol Environ Saf; 2024 Feb; 271():116011. PubMed ID: 38266356 [TBL] [Abstract][Full Text] [Related]
10. Boron demanding tissues of Brassica napus express specific sets of functional Nodulin26-like Intrinsic Proteins and BOR1 transporters. Diehn TA; Bienert MD; Pommerrenig B; Liu Z; Spitzer C; Bernhardt N; Fuge J; Bieber A; Richet N; Chaumont F; Bienert GP Plant J; 2019 Oct; 100(1):68-82. PubMed ID: 31148338 [TBL] [Abstract][Full Text] [Related]
11. Molecular characterization of the genome-wide BOR transporter gene family and genetic analysis of BnaC04.BOR1;1c in Brassica napus. Chen H; Zhang Q; He M; Wang S; Shi L; Xu F BMC Plant Biol; 2018 Sep; 18(1):193. PubMed ID: 30217178 [TBL] [Abstract][Full Text] [Related]
12. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress. Liu C; Zhang X; Zhang K; An H; Hu K; Wen J; Shen J; Ma C; Yi B; Tu J; Fu T Int J Mol Sci; 2015 Aug; 16(8):18752-77. PubMed ID: 26270661 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide analysis and functional characterization of the DELLA gene family associated with stress tolerance in B. napus. Sarwar R; Jiang T; Ding P; Gao Y; Tan X; Zhu K BMC Plant Biol; 2021 Jun; 21(1):286. PubMed ID: 34157966 [TBL] [Abstract][Full Text] [Related]
14. Transcription factor BnaA9.WRKY47 contributes to the adaptation of Brassica napus to low boron stress by up-regulating the boric acid channel gene BnaA3.NIP5;1. Feng Y; Cui R; Wang S; He M; Hua Y; Shi L; Ye X; Xu F Plant Biotechnol J; 2020 May; 18(5):1241-1254. PubMed ID: 31705705 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome profiling of Brassica napus stem sections in relation to differences in lignin content. Hossain Z; Pillai BV; Gruber MY; Yu M; Amyot L; Hannoufa A BMC Genomics; 2018 Apr; 19(1):255. PubMed ID: 29661131 [TBL] [Abstract][Full Text] [Related]
17. Identification of Flower-Specific Promoters through Comparative Transcriptome Analysis in Li Y; Dong C; Hu M; Bai Z; Tong C; Zuo R; Liu Y; Cheng X; Cheng M; Huang J; Liu S Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779216 [No Abstract] [Full Text] [Related]
18. Mapping and candidate gene analysis of clustered bud on the main inflorescence in Brassica napus L. Zheng WY; Zhu ZY; Sami A; Sun MY; Li Y; Hu J; Qian XZ; Ma JX; Wang MQ; Yu Y; Zhang FG; Zhou KJ; Zhu ZH BMC Plant Biol; 2023 Jul; 23(1):348. PubMed ID: 37403046 [TBL] [Abstract][Full Text] [Related]
19. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
20. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus. Li Y; Wang X; Zhang H; Wang S; Ye X; Shi L; Xu F; Ding G PLoS One; 2019; 14(7):e0220374. PubMed ID: 31344115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]