BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38148221)

  • 1. Identification of ascorbate- and salicylate-responsive miRNAs and verification of the spectral control of miR395 in Arabidopsis.
    Székely A; Gulyás Z; Balogh E; Payet R; Dalmay T; Kocsy G; Kalapos B
    Physiol Plant; 2023; 175(6):e14070. PubMed ID: 38148221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis.
    Kawashima CG; Matthewman CA; Huang S; Lee BR; Yoshimoto N; Koprivova A; Rubio-Somoza I; Todesco M; Rathjen T; Saito K; Takahashi H; Dalmay T; Kopriva S
    Plant J; 2011 Jun; 66(5):863-76. PubMed ID: 21401744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis.
    Jagadeeswaran G; Li YF; Sunkar R
    Plant J; 2014 Jan; 77(1):85-96. PubMed ID: 24164591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal regulation among miR395, APS and SULTR2;1 in Arabidopsis thaliana.
    Liang G; Yu D
    Plant Signal Behav; 2010 Oct; 5(10):1257-9. PubMed ID: 20935495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana.
    Liang G; Yang F; Yu D
    Plant J; 2010 Jun; 62(6):1046-57. PubMed ID: 20374528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types.
    Kawashima CG; Yoshimoto N; Maruyama-Nakashita A; Tsuchiya YN; Saito K; Takahashi H; Dalmay T
    Plant J; 2009 Jan; 57(2):313-21. PubMed ID: 18801012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miR398 and miR395 are involved in response to SO
    Li L; Yi H; Xue M; Yi M
    Ecotoxicology; 2017 Nov; 26(9):1181-1187. PubMed ID: 28819808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis.
    Matthewman CA; Kawashima CG; Húska D; Csorba T; Dalmay T; Kopriva S
    FEBS Lett; 2012 Sep; 586(19):3242-8. PubMed ID: 22771787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound.
    Lappartient AG; Vidmar JJ; Leustek T; Glass AD; Touraine B
    Plant J; 1999 Apr; 18(1):89-95. PubMed ID: 10341446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis.
    Yuan N; Yuan S; Li Z; Li D; Hu Q; Luo H
    Sci Rep; 2016 Jun; 6():28791. PubMed ID: 27350219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones.
    Honsel A; Kojima M; Haas R; Frank W; Sakakibara H; Herschbach C; Rennenberg H
    J Exp Bot; 2012 Mar; 63(5):1873-93. PubMed ID: 22162873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana.
    Liang G; He H; Yu D
    PLoS One; 2012; 7(11):e48951. PubMed ID: 23155433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural variation in the ATPS1 isoform of ATP sulfurylase contributes to the control of sulfate levels in Arabidopsis.
    Koprivova A; Giovannetti M; Baraniecka P; Lee BR; Grondin C; Loudet O; Kopriva S
    Plant Physiol; 2013 Nov; 163(3):1133-41. PubMed ID: 24027241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of sulfate concentration by miR395-targeted
    Ai Q; Liang G; Zhang H; Yu D
    Plant Divers; 2016 Apr; 38(2):92-100. PubMed ID: 30159453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ATP sulfurylase overexpression in bright yellow 2 tobacco cells. Regulation Of atp sulfurylase and SO4(2-) transport activities.
    Hatzfeld Y; Cathala N; Grignon C; Davidian JC
    Plant Physiol; 1998 Apr; 116(4):1307-13. PubMed ID: 9536047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5'-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols.
    Vauclare P; Kopriva S; Fell D; Suter M; Sticher L; von Ballmoos P; Krähenbühl U; den Camp RO; Brunold C
    Plant J; 2002 Sep; 31(6):729-40. PubMed ID: 12220264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miR395-regulated sulfate metabolism exploits pathogen sensitivity to sulfate to boost immunity in rice.
    Yang Z; Hui S; Lv Y; Zhang M; Chen D; Tian J; Zhang H; Liu H; Cao J; Xie W; Wu C; Wang S; Yuan M
    Mol Plant; 2022 Apr; 15(4):671-688. PubMed ID: 34968734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR395 is involved in detoxification of cadmium in Brassica napus.
    Zhang LW; Song JB; Shu XX; Zhang Y; Yang ZM
    J Hazard Mater; 2013 Apr; 250-251():204-11. PubMed ID: 23454459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase.
    Heiss S; Schäfer HJ; Haag-Kerwer A; Rausch T
    Plant Mol Biol; 1999 Mar; 39(4):847-57. PubMed ID: 10350097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down-regulation by L-cysteine.
    Bolchi A; Petrucco S; Tenca PL; Foroni C; Ottonello S
    Plant Mol Biol; 1999 Feb; 39(3):527-37. PubMed ID: 10092180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.