BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38148334)

  • 1. Exploring the impact of super-resolution deep learning on MR angiography image quality.
    Hokamura M; Uetani H; Nakaura T; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Ueda M; Mukasa A; Hirai T
    Neuroradiology; 2024 Feb; 66(2):217-226. PubMed ID: 38148334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved stent sharpness evaluation with super-resolution deep learning reconstruction in coronary CT angiography.
    Ryu JK; Kim KH; Otgonbaatar C; Kim DS; Shim H; Seo JW
    Br J Radiol; 2024 Jun; 97(1159):1286-1294. PubMed ID: 38733576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography.
    Nagayama Y; Emoto T; Kato Y; Kidoh M; Oda S; Sakabe D; Funama Y; Nakaura T; Hayashi H; Takada S; Uchimura R; Hatemura M; Tsujita K; Hirai T
    Eur Radiol; 2023 Dec; 33(12):8488-8500. PubMed ID: 37432405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of deep learning reconstruction on intracranial 1.5 T magnetic resonance angiography.
    Yasaka K; Akai H; Sugawara H; Tajima T; Akahane M; Yoshioka N; Kabasawa H; Miyo R; Ohtomo K; Abe O; Kiryu S
    Jpn J Radiol; 2022 May; 40(5):476-483. PubMed ID: 34851499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility study of super-resolution deep learning-based reconstruction using k-space data in brain diffusion-weighted images.
    Matsuo K; Nakaura T; Morita K; Uetani H; Nagayama Y; Kidoh M; Hokamura M; Yamashita Y; Shinoda K; Ueda M; Mukasa A; Hirai T
    Neuroradiology; 2023 Nov; 65(11):1619-1629. PubMed ID: 37673835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique.
    Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K
    Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based reconstruction and 3D hybrid profile order technique for MRCP at 3T: evaluation of image quality and acquisition time.
    Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Tanaka Y; Baba H; Hirai T
    Eur Radiol; 2023 Nov; 33(11):7585-7594. PubMed ID: 37178197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing High-Resolution MR Angiography: The Synergistic Effects of 3D Wheel Sampling and Deep Learning-Based Reconstruction.
    Sasaki G; Uetani H; Nakaura T; Nakahara K; Morita K; Nagayama Y; Kidoh M; Iwashita K; Yoshida N; Hokamura M; Yamashita Y; Nakajima M; Ueda M; Hirai T
    J Comput Assist Tomogr; 2024 Feb; ():. PubMed ID: 38346820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-resolution deep learning reconstruction at coronary computed tomography angiography to evaluate the coronary arteries and in-stent lumen: an initial experience.
    Orii M; Sone M; Osaki T; Ueyama Y; Chiba T; Sasaki T; Yoshioka K
    BMC Med Imaging; 2023 Oct; 23(1):171. PubMed ID: 37904089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A preliminary study of super-resolution deep learning reconstruction with cardiac option for evaluation of endovascular-treated intracranial aneurysms.
    Otgonbaatar C; Kim H; Jeon PH; Jeon SH; Cha SJ; Ryu JK; Jung WB; Shim H; Ko SM; Kim JW
    Br J Radiol; 2024 Jun; ():. PubMed ID: 38917414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coronary Stent Evaluation by CTA: Image Quality Comparison Between Super-Resolution Deep Learning Reconstruction and Other Reconstruction Algorithms.
    Nagayama Y; Emoto T; Hayashi H; Kidoh M; Oda S; Nakaura T; Sakabe D; Funama Y; Tabata N; Ishii M; Yamanaga K; Fujisue K; Takashio S; Yamamoto E; Tsujita K; Hirai T
    AJR Am J Roentgenol; 2023 Nov; 221(5):599-610. PubMed ID: 37377362
    [No Abstract]   [Full Text] [Related]  

  • 12. A preliminary study of deep learning-based reconstruction specialized for denoising in high-frequency domain: usefulness in high-resolution three-dimensional magnetic resonance cisternography of the cerebellopontine angle.
    Uetani H; Nakaura T; Kitajima M; Yamashita Y; Hamasaki T; Tateishi M; Morita K; Sasao A; Oda S; Ikeda O; Yamashita Y
    Neuroradiology; 2021 Jan; 63(1):63-71. PubMed ID: 32794075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of Spatial Resolution on Coronary CT Angiography by Using Super-Resolution Deep Learning Reconstruction.
    Tatsugami F; Higaki T; Kawashita I; Fukumoto W; Nakamura Y; Matsuura M; Lee TC; Zhou J; Cai L; Kitagawa T; Nakano Y; Awai K
    Acad Radiol; 2023 Nov; 30(11):2497-2504. PubMed ID: 36681533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical feasibility of deep learning reconstruction in liver diffusion-weighted imaging: Improvement of image quality and impact on apparent diffusion coefficient value.
    Chen Q; Fang S; Yuchen Y; Li R; Deng R; Chen Y; Ma D; Lin H; Yan F
    Eur J Radiol; 2023 Nov; 168():111149. PubMed ID: 37862927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LAVA HyperSense and deep-learning reconstruction for near-isotropic (3D) enhanced magnetic resonance enterography in patients with Crohn's disease: utility in noise reduction and image quality improvement.
    Son JH; Lee Y; Lee HJ; Lee J; Kim H; Lebel MR
    Diagn Interv Radiol; 2023 May; 29(3):437-449. PubMed ID: 37098650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study.
    Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Oda S; Tanoue S; Kidoh M; Nakaura T; Funama Y; Uchimura R; Takada S; Hayashi H; Hatemura M; Hirai T
    AJR Am J Roentgenol; 2022 Aug; 219(2):315-324. PubMed ID: 35195431
    [No Abstract]   [Full Text] [Related]  

  • 17. MR imaging for shoulder diseases: Effect of compressed sensing and deep learning reconstruction on examination time and imaging quality compared with that of parallel imaging.
    Obama Y; Ohno Y; Yamamoto K; Ikedo M; Yui M; Hanamatsu S; Ueda T; Ikeda H; Murayama K; Toyama H
    Magn Reson Imaging; 2022 Dec; 94():56-63. PubMed ID: 35934207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans.
    Fujita S; Hagiwara A; Otsuka Y; Hori M; Takei N; Hwang KP; Irie R; Andica C; Kamagata K; Akashi T; Kunishima Kumamaru K; Suzuki M; Wada A; Abe O; Aoki S
    Invest Radiol; 2020 Apr; 55(4):249-256. PubMed ID: 31977603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based image restoration algorithm for coronary CT angiography.
    Tatsugami F; Higaki T; Nakamura Y; Yu Z; Zhou J; Lu Y; Fujioka C; Kitagawa T; Kihara Y; Iida M; Awai K
    Eur Radiol; 2019 Oct; 29(10):5322-5329. PubMed ID: 30963270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-resolution Deep Learning Reconstruction for 3D Brain MR Imaging: Improvement of Cranial Nerve Depiction and Interobserver Agreement in Evaluations of Neurovascular Conflict.
    Yasaka K; Kanzawa J; Nakaya M; Kurokawa R; Tajima T; Akai H; Yoshioka N; Akahane M; Ohtomo K; Abe O; Kiryu S
    Acad Radiol; 2024 Jun; ():. PubMed ID: 38897913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.