These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38148334)

  • 1. Exploring the impact of super-resolution deep learning on MR angiography image quality.
    Hokamura M; Uetani H; Nakaura T; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Ueda M; Mukasa A; Hirai T
    Neuroradiology; 2024 Feb; 66(2):217-226. PubMed ID: 38148334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging.
    Hokamura M; Nakaura T; Yoshida N; Uetani H; Shiraishi K; Kobayashi N; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Miyamoto T; Hirai T
    Eur J Radiol; 2024 Sep; 178():111587. PubMed ID: 39002269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved stent sharpness evaluation with super-resolution deep learning reconstruction in coronary CT angiography.
    Ryu JK; Kim KH; Otgonbaatar C; Kim DS; Shim H; Seo JW
    Br J Radiol; 2024 Jun; 97(1159):1286-1294. PubMed ID: 38733576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography.
    Nagayama Y; Emoto T; Kato Y; Kidoh M; Oda S; Sakabe D; Funama Y; Nakaura T; Hayashi H; Takada S; Uchimura R; Hatemura M; Tsujita K; Hirai T
    Eur Radiol; 2023 Dec; 33(12):8488-8500. PubMed ID: 37432405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of deep learning reconstruction on intracranial 1.5 T magnetic resonance angiography.
    Yasaka K; Akai H; Sugawara H; Tajima T; Akahane M; Yoshioka N; Kabasawa H; Miyo R; Ohtomo K; Abe O; Kiryu S
    Jpn J Radiol; 2022 May; 40(5):476-483. PubMed ID: 34851499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility study of super-resolution deep learning-based reconstruction using k-space data in brain diffusion-weighted images.
    Matsuo K; Nakaura T; Morita K; Uetani H; Nagayama Y; Kidoh M; Hokamura M; Yamashita Y; Shinoda K; Ueda M; Mukasa A; Hirai T
    Neuroradiology; 2023 Nov; 65(11):1619-1629. PubMed ID: 37673835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing High-Resolution MR Angiography: The Synergistic Effects of 3D Wheel Sampling and Deep Learning-Based Reconstruction.
    Sasaki G; Uetani H; Nakaura T; Nakahara K; Morita K; Nagayama Y; Kidoh M; Iwashita K; Yoshida N; Hokamura M; Yamashita Y; Nakajima M; Ueda M; Hirai T
    J Comput Assist Tomogr; 2024 Sep-Oct 01; 48(5):819-825. PubMed ID: 38346820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique.
    Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K
    Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A preliminary study of super-resolution deep learning reconstruction with cardiac option for evaluation of endovascular-treated intracranial aneurysms.
    Otgonbaatar C; Kim H; Jeon PH; Jeon SH; Cha SJ; Ryu JK; Jung WB; Shim H; Ko SM; Kim JW
    Br J Radiol; 2024 Aug; 97(1160):1492-1500. PubMed ID: 38917414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based reconstruction and 3D hybrid profile order technique for MRCP at 3T: evaluation of image quality and acquisition time.
    Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Tanaka Y; Baba H; Hirai T
    Eur Radiol; 2023 Nov; 33(11):7585-7594. PubMed ID: 37178197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-resolution deep learning reconstruction at coronary computed tomography angiography to evaluate the coronary arteries and in-stent lumen: an initial experience.
    Orii M; Sone M; Osaki T; Ueyama Y; Chiba T; Sasaki T; Yoshioka K
    BMC Med Imaging; 2023 Oct; 23(1):171. PubMed ID: 37904089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronary Stent Evaluation by CTA: Image Quality Comparison Between Super-Resolution Deep Learning Reconstruction and Other Reconstruction Algorithms.
    Nagayama Y; Emoto T; Hayashi H; Kidoh M; Oda S; Nakaura T; Sakabe D; Funama Y; Tabata N; Ishii M; Yamanaga K; Fujisue K; Takashio S; Yamamoto E; Tsujita K; Hirai T
    AJR Am J Roentgenol; 2023 Nov; 221(5):599-610. PubMed ID: 37377362
    [No Abstract]   [Full Text] [Related]  

  • 13. A preliminary study of deep learning-based reconstruction specialized for denoising in high-frequency domain: usefulness in high-resolution three-dimensional magnetic resonance cisternography of the cerebellopontine angle.
    Uetani H; Nakaura T; Kitajima M; Yamashita Y; Hamasaki T; Tateishi M; Morita K; Sasao A; Oda S; Ikeda O; Yamashita Y
    Neuroradiology; 2021 Jan; 63(1):63-71. PubMed ID: 32794075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of Spatial Resolution on Coronary CT Angiography by Using Super-Resolution Deep Learning Reconstruction.
    Tatsugami F; Higaki T; Kawashita I; Fukumoto W; Nakamura Y; Matsuura M; Lee TC; Zhou J; Cai L; Kitagawa T; Nakano Y; Awai K
    Acad Radiol; 2023 Nov; 30(11):2497-2504. PubMed ID: 36681533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical feasibility of deep learning reconstruction in liver diffusion-weighted imaging: Improvement of image quality and impact on apparent diffusion coefficient value.
    Chen Q; Fang S; Yuchen Y; Li R; Deng R; Chen Y; Ma D; Lin H; Yan F
    Eur J Radiol; 2023 Nov; 168():111149. PubMed ID: 37862927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LAVA HyperSense and deep-learning reconstruction for near-isotropic (3D) enhanced magnetic resonance enterography in patients with Crohn's disease: utility in noise reduction and image quality improvement.
    Son JH; Lee Y; Lee HJ; Lee J; Kim H; Lebel MR
    Diagn Interv Radiol; 2023 May; 29(3):437-449. PubMed ID: 37098650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of compressed sensing and deep learning reconstruction for adult female pelvic MRI at 1.5 T.
    Ueda T; Yamamoto K; Yazawa N; Tozawa I; Ikedo M; Yui M; Nagata H; Nomura M; Ozawa Y; Ohno Y
    Eur Radiol Exp; 2024 Sep; 8(1):103. PubMed ID: 39254920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MR imaging for shoulder diseases: Effect of compressed sensing and deep learning reconstruction on examination time and imaging quality compared with that of parallel imaging.
    Obama Y; Ohno Y; Yamamoto K; Ikedo M; Yui M; Hanamatsu S; Ueda T; Ikeda H; Murayama K; Toyama H
    Magn Reson Imaging; 2022 Dec; 94():56-63. PubMed ID: 35934207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans.
    Fujita S; Hagiwara A; Otsuka Y; Hori M; Takei N; Hwang KP; Irie R; Andica C; Kamagata K; Akashi T; Kunishima Kumamaru K; Suzuki M; Wada A; Abe O; Aoki S
    Invest Radiol; 2020 Apr; 55(4):249-256. PubMed ID: 31977603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based image restoration algorithm for coronary CT angiography.
    Tatsugami F; Higaki T; Nakamura Y; Yu Z; Zhou J; Lu Y; Fujioka C; Kitagawa T; Kihara Y; Iida M; Awai K
    Eur Radiol; 2019 Oct; 29(10):5322-5329. PubMed ID: 30963270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.