These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 38148334)
21. Super-resolution Deep Learning Reconstruction for 3D Brain MR Imaging: Improvement of Cranial Nerve Depiction and Interobserver Agreement in Evaluations of Neurovascular Conflict. Yasaka K; Kanzawa J; Nakaya M; Kurokawa R; Tajima T; Akai H; Yoshioka N; Akahane M; Ohtomo K; Abe O; Kiryu S Acad Radiol; 2024 Dec; 31(12):5118-5127. PubMed ID: 38897913 [TBL] [Abstract][Full Text] [Related]
22. Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging. Ueda T; Ohno Y; Yamamoto K; Murayama K; Ikedo M; Yui M; Hanamatsu S; Tanaka Y; Obama Y; Ikeda H; Toyama H Radiology; 2022 May; 303(2):373-381. PubMed ID: 35103536 [TBL] [Abstract][Full Text] [Related]
23. Comparison of utility of deep learning reconstruction on 3D MRCPs obtained with three different k-space data acquisitions in patients with IPMN. Matsuyama T; Ohno Y; Yamamoto K; Ikedo M; Yui M; Furuta M; Fujisawa R; Hanamatsu S; Nagata H; Ueda T; Ikeda H; Takeda S; Iwase A; Fukuba T; Akamatsu H; Hanaoka R; Kato R; Murayama K; Toyama H Eur Radiol; 2022 Oct; 32(10):6658-6667. PubMed ID: 35687136 [TBL] [Abstract][Full Text] [Related]
24. Assessment of multi-modal magnetic resonance imaging for glioma based on a deep learning reconstruction approach with the denoising method. Sun J; Xu S; Guo Y; Ding J; Zhuo Z; Zhou D; Liu Y Acta Radiol; 2024 Oct; 65(10):1257-1264. PubMed ID: 39219486 [TBL] [Abstract][Full Text] [Related]
25. Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection. Tamura A; Mukaida E; Ota Y; Kamata M; Abe S; Yoshioka K Br J Radiol; 2021 Jul; 94(1123):20201357. PubMed ID: 34142867 [TBL] [Abstract][Full Text] [Related]
26. Super-Resolution Deep Learning Reconstruction for Improved Image Quality of Coronary CT Angiography. Takafuji M; Kitagawa K; Mizutani S; Hamaguchi A; Kisou R; Iio K; Ichikawa K; Izumi D; Sakuma H Radiol Cardiothorac Imaging; 2023 Aug; 5(4):e230085. PubMed ID: 37693207 [TBL] [Abstract][Full Text] [Related]
27. Verification of image quality improvement by deep learning reconstruction to 1.5 T MRI in T2-weighted images of the prostate gland. Sato Y; Ohkuma K Radiol Phys Technol; 2024 Sep; 17(3):756-764. PubMed ID: 38850389 [TBL] [Abstract][Full Text] [Related]
28. Improvement in Image Quality and Visibility of Coronary Arteries, Stents, and Valve Structures on CT Angiography by Deep Learning Reconstruction. Otgonbaatar C; Ryu JK; Shin J; Woo JY; Seo JW; Shim H; Hwang DH Korean J Radiol; 2022 Nov; 23(11):1044-1054. PubMed ID: 36196766 [TBL] [Abstract][Full Text] [Related]
29. [Deep learning reconstruction algorithm for coronary CT angiography in assessing obstructive coronary artery disease caused by calcified lesions: the clinical application value]. Xu C; Yi Y; Li YY; Guo YB; Jin ZY; Wang YN Zhonghua Yi Xue Za Zhi; 2021 Oct; 101(39):3202-3207. PubMed ID: 34689531 [No Abstract] [Full Text] [Related]
30. Effects of Deep Learning Reconstruction Technique in High-Resolution Non-contrast Magnetic Resonance Coronary Angiography at a 3-Tesla Machine. Yokota Y; Takeda C; Kidoh M; Oda S; Aoki R; Ito K; Morita K; Haraoka K; Yamashita Y; Iizuka H; Kato S; Tsujita K; Ikeda O; Yamashita Y; Utsunomiya D Can Assoc Radiol J; 2021 Feb; 72(1):120-127. PubMed ID: 32070116 [TBL] [Abstract][Full Text] [Related]
31. Motion robust coronary MR angiography using zigzag centric ky-kz trajectory and high-resolution deep learning reconstruction. Ota H; Morita Y; Vucevic D; Higuchi S; Takagi H; Kutsuna H; Yamashita Y; Kim P; Miyazaki M MAGMA; 2024 Dec; 37(6):1105-1117. PubMed ID: 38916681 [TBL] [Abstract][Full Text] [Related]
32. Super-resolution Deep Learning Reconstruction Cervical Spine 1.5T MRI: Improved Interobserver Agreement in Evaluations of Neuroforaminal Stenosis Compared to Conventional Deep Learning Reconstruction. Yasaka K; Uehara S; Kato S; Watanabe Y; Tajima T; Akai H; Yoshioka N; Akahane M; Ohtomo K; Abe O; Kiryu S J Imaging Inform Med; 2024 Oct; 37(5):2466-2473. PubMed ID: 38671337 [TBL] [Abstract][Full Text] [Related]
33. Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality. Lee KL; Kessler DA; Dezonie S; Chishaya W; Shepherd C; Carmo B; Graves MJ; Barrett T Eur J Radiol; 2023 Sep; 166():111017. PubMed ID: 37541181 [TBL] [Abstract][Full Text] [Related]
34. Deep learning reconstruction allows for usage of contrast agent of lower concentration for coronary CTA than filtered back projection and hybrid iterative reconstruction. Otgonbaatar C; Ryu JK; Shin J; Kim HM; Seo JW; Shim H; Hwang DH Acta Radiol; 2023 Mar; 64(3):1007-1017. PubMed ID: 35979586 [TBL] [Abstract][Full Text] [Related]
35. Image quality comparison of lower extremity CTA between CT routine reconstruction algorithms and deep learning reconstruction. Zhang D; Mu C; Zhang X; Yan J; Xu M; Wang Y; Wang Y; Xue H; Chen Y; Jin Z BMC Med Imaging; 2023 Feb; 23(1):33. PubMed ID: 36800947 [TBL] [Abstract][Full Text] [Related]
36. [Effect of Deep Learning-based Contrast-enhanced CT Image Reconstruction on the Image Quality of the Biliary System]. Wang ST; Xu J; Wang X; Wang Y; Xue HD; Jin ZY Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2022 Aug; 44(4):614-620. PubMed ID: 36065694 [TBL] [Abstract][Full Text] [Related]
37. Super-resolution deep learning image reconstruction: image quality and myocardial homogeneity in coronary computed tomography angiography. Otgonbaatar C; Kim H; Jeon PH; Jeon SH; Cha SJ; Ryu JK; Jung WB; Shim H; Ko SM J Cardiovasc Imaging; 2024 Sep; 32(1):30. PubMed ID: 39304957 [TBL] [Abstract][Full Text] [Related]
38. Image quality and radiologists' subjective acceptance using model-based iterative and deep learning reconstructions as adjuncts to ultrahigh-resolution CT in low-dose contrast-enhanced abdominopelvic CT: phantom and clinical pilot studies. Nishikawa M; Machida H; Shimizu Y; Kariyasu T; Morisaka H; Adachi T; Nakai T; Sakaguchi K; Saito S; Matsumoto S; Koyanagi M; Yokoyama K Abdom Radiol (NY); 2022 Feb; 47(2):891-902. PubMed ID: 34914007 [TBL] [Abstract][Full Text] [Related]
39. Ultra-High-Resolution T2-Weighted PROPELLER MRI of the Rectum With Deep Learning Reconstruction: Assessment of Image Quality and Diagnostic Performance. Matsumoto S; Tsuboyama T; Onishi H; Fukui H; Honda T; Wakayama T; Wang X; Matsui T; Nakamoto A; Ota T; Kiso K; Osawa K; Tomiyama N Invest Radiol; 2024 Jul; 59(7):479-488. PubMed ID: 37975732 [TBL] [Abstract][Full Text] [Related]
40. Super resolution deep learning reconstruction for coronary CT angiography: A structured phantom study. Higaki T; Tatsugami F; Ohana M; Nakamura Y; Kawashita I; Awai K Eur J Radiol Open; 2024 Jun; 12():100570. PubMed ID: 38828096 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]