These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38148334)

  • 41. Evaluation of late gadolinium enhancement cardiac MRI using deep learning reconstruction.
    Yang J; Wang F; Wang Z; Zhang W; Xie L; Wang L
    Acta Radiol; 2023 Oct; 64(10):2714-2721. PubMed ID: 37700572
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT.
    Son W; Kim M; Hwang JY; Kim YW; Park C; Choo KS; Kim TU; Jang JY
    Korean J Radiol; 2022 Jul; 23(7):752-762. PubMed ID: 35695313
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep learning-based reconstruction can improve canine thoracolumbar magnetic resonance image quality and reduce slice thickness.
    Kang H; Noh D; Lee SK; Choi S; Lee K
    Vet Radiol Ultrasound; 2023 Nov; 64(6):1063-1070. PubMed ID: 37667979
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deep learning-based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms.
    Oostveen LJ; Meijer FJA; de Lange F; Smit EJ; Pegge SA; Steens SCA; van Amerongen MJ; Prokop M; Sechopoulos I
    Eur Radiol; 2021 Aug; 31(8):5498-5506. PubMed ID: 33693996
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis.
    van Stiphout JA; Driessen J; Koetzier LR; Ruules LB; Willemink MJ; Heemskerk JWT; van der Molen AJ
    Eur Radiol; 2022 May; 32(5):2921-2929. PubMed ID: 34913104
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT.
    Akagi M; Nakamura Y; Higaki T; Narita K; Honda Y; Zhou J; Yu Z; Akino N; Awai K
    Eur Radiol; 2019 Nov; 29(11):6163-6171. PubMed ID: 30976831
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hybrid deep-learning-based denoising method for compressed sensing in pituitary MRI: comparison with the conventional wavelet-based denoising method.
    Uetani H; Nakaura T; Kitajima M; Morita K; Haraoka K; Shinojima N; Tateishi M; Inoue T; Sasao A; Mukasa A; Azuma M; Ikeda O; Yamashita Y; Hirai T
    Eur Radiol; 2022 Jul; 32(7):4527-4536. PubMed ID: 35169896
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthetic Time of Flight Magnetic Resonance Angiography Generation Model Based on Cycle-Consistent Generative Adversarial Network Using PETRA-MRA in the Patients With Treated Intracranial Aneurysm.
    You SH; Cho Y; Kim B; Yang KS; Kim BK; Park SE
    J Magn Reson Imaging; 2022 Nov; 56(5):1513-1528. PubMed ID: 35142407
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dark-Blood Computed Tomography Angiography Combined With Deep Learning Reconstruction for Cervical Artery Wall Imaging in Takayasu Arteritis.
    Su T; Zhang Z; Chen Y; Wang Y; Li Y; Xu M; Wang J; Li J; Tian X; Jin Z
    Korean J Radiol; 2024 Apr; 25(4):384-394. PubMed ID: 38528696
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep learning-based reconstruction for canine brain magnetic resonance imaging could improve image quality while reducing scan time.
    Choi H; Lee SK; Choi H; Lee Y; Lee K
    Vet Radiol Ultrasound; 2023 Sep; 64(5):873-880. PubMed ID: 37582510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deep Learning Reconstruction to Improve the Quality of MR Imaging: Evaluating the Best Sequence for T-category Assessment in Non-small Cell Lung Cancer Patients.
    Takenaka D; Ozawa Y; Yamamoto K; Shinohara M; Ikedo M; Yui M; Oshima Y; Hamabuchi N; Nagata H; Ueda T; Ikeda H; Iwase A; Yoshikawa T; Toyama H; Ohno Y
    Magn Reson Med Sci; 2024 Oct; 23(4):487-501. PubMed ID: 37661425
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction.
    Brady SL; Trout AT; Somasundaram E; Anton CG; Li Y; Dillman JR
    Radiology; 2021 Jan; 298(1):180-188. PubMed ID: 33201790
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fast high-quality MRI protocol of the lumbar spine with deep learning-based algorithm: an image quality and scanning time comparison with standard protocol.
    Zerunian M; Pucciarelli F; Caruso D; De Santis D; Polici M; Masci B; Nacci I; Del Gaudio A; Argento G; Redler A; Laghi A
    Skeletal Radiol; 2024 Jan; 53(1):151-159. PubMed ID: 37369725
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Super-resolution intracranial quiescent interval slice-selective magnetic resonance angiography.
    Koktzoglou I; Edelman RR
    Magn Reson Med; 2018 Feb; 79(2):683-691. PubMed ID: 28470792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing.
    Lin Z; Zhang X; Guo L; Wang K; Jiang Y; Hu X; Huang Y; Wei J; Ma S; Liu Y; Zhu L; Zhuo Z; Liu J; Wang X
    J Magn Reson Imaging; 2019 Dec; 50(6):1843-1851. PubMed ID: 30980468
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimized 3D brachial plexus MR neurography using deep learning reconstruction.
    Sneag DB; Queler SC; Campbell G; Colucci PG; Lin J; Lin Y; Wen Y; Li Q; Tan ET
    Skeletal Radiol; 2024 Apr; 53(4):779-789. PubMed ID: 37914895
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of moyamoya disease in CT angiography using ultra-high-resolution computed tomography: Application of deep learning reconstruction.
    Fukushima Y; Fushimi Y; Funaki T; Sakata A; Hinoda T; Nakajima S; Sakamoto R; Yoshida K; Miyamoto S; Nakamoto Y
    Eur J Radiol; 2022 Jun; 151():110294. PubMed ID: 35427840
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment.
    Bornet PA; Villani N; Gillet R; Germain E; Lombard C; Blum A; Gondim Teixeira PA
    Eur Radiol; 2022 May; 32(5):3161-3172. PubMed ID: 34989850
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deep Learning-Based Synthetic TOF-MRA Generation Using Time-Resolved MRA in Fast Stroke Imaging.
    You SH; Cho Y; Kim B; Yang KS; Kim I; Kim BK; Pak A; Park SE
    AJNR Am J Neuroradiol; 2023 Dec; 44(12):1391-1398. PubMed ID: 38049991
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction.
    Hahn S; Yi J; Lee HJ; Lee Y; Lim YJ; Bang JY; Kim H; Lee J
    AJR Am J Roentgenol; 2022 Mar; 218(3):506-516. PubMed ID: 34523950
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.