These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 38148797)
1. SNO-DCA: A model for predicting Jia J; Lv P; Wei X; Qiu W Heliyon; 2024 Jan; 10(1):e23187. PubMed ID: 38148797 [TBL] [Abstract][Full Text] [Related]
2. GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm. Xue Y; Liu Z; Gao X; Jin C; Wen L; Yao X; Ren J PLoS One; 2010 Jun; 5(6):e11290. PubMed ID: 20585580 [TBL] [Abstract][Full Text] [Related]
3. An efficient support vector machine approach for identifying protein S-nitrosylation sites. Li YX; Shao YH; Jing L; Deng NY Protein Pept Lett; 2011 Jun; 18(6):573-87. PubMed ID: 21271979 [TBL] [Abstract][Full Text] [Related]
4. pLMSNOSite: an ensemble-based approach for predicting protein S-nitrosylation sites by integrating supervised word embedding and embedding from pre-trained protein language model. Pratyush P; Pokharel S; Saigo H; Kc DB BMC Bioinformatics; 2023 Feb; 24(1):41. PubMed ID: 36755242 [TBL] [Abstract][Full Text] [Related]
5. PPSNO: A Feature-Rich SNO Sites Predictor by Stacking Ensemble Strategy from Protein Sequence-Derived Information. Zhu L; Wang L; Yang Z; Xu P; Yang S Interdiscip Sci; 2024 Mar; 16(1):192-217. PubMed ID: 38206557 [TBL] [Abstract][Full Text] [Related]
6. Mul-SNO: A Novel Prediction Tool for S-Nitrosylation Sites Based on Deep Learning Methods. Zhao Q; Ma J; Wang Y; Xie F; Lv Z; Xu Y; Shi H; Han K IEEE J Biomed Health Inform; 2022 May; 26(5):2379-2387. PubMed ID: 34762593 [TBL] [Abstract][Full Text] [Related]
7. Prediction of S-nitrosylation sites by integrating support vector machines and random forest. Hasan MM; Manavalan B; Khatun MS; Kurata H Mol Omics; 2019 Dec; 15(6):451-458. PubMed ID: 31710075 [TBL] [Abstract][Full Text] [Related]
8. TRAP1 S-nitrosylation as a model of population-shift mechanism to study the effects of nitric oxide on redox-sensitive oncoproteins. Papaleo E; Tiberti M; Arnaudi M; Pecorari C; Faienza F; Cantwell L; Degn K; Pacello F; Battistoni A; Lambrughi M; Filomeni G Cell Death Dis; 2023 Apr; 14(4):284. PubMed ID: 37085483 [TBL] [Abstract][Full Text] [Related]
9. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. Xu Y; Ding J; Wu LY; Chou KC PLoS One; 2013; 8(2):e55844. PubMed ID: 23409062 [TBL] [Abstract][Full Text] [Related]
10. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Hao G; Derakhshan B; Shi L; Campagne F; Gross SS Proc Natl Acad Sci U S A; 2006 Jan; 103(4):1012-7. PubMed ID: 16418269 [TBL] [Abstract][Full Text] [Related]
11. Recent Advances in Predicting Protein S-Nitrosylation Sites. Zhao Q; Ma J; Xie F; Wang Y; Zhang Y; Li H; Sun Y; Wang L; Guo M; Han K Biomed Res Int; 2021; 2021():5542224. PubMed ID: 33628788 [TBL] [Abstract][Full Text] [Related]
12. Predict and analyze S-nitrosylation modification sites with the mRMR and IFS approaches. Li BQ; Hu LL; Niu S; Cai YD; Chou KC J Proteomics; 2012 Feb; 75(5):1654-65. PubMed ID: 22178444 [TBL] [Abstract][Full Text] [Related]
13. im5C-DSCGA: A Proposed Hybrid Framework Based on Improved DenseNet and Attention Mechanisms for Identifying 5-methylcytosine Sites in Human RNA. Jia J; Qin L; Lei R Front Biosci (Landmark Ed); 2023 Dec; 28(12):346. PubMed ID: 38179749 [TBL] [Abstract][Full Text] [Related]
14. Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile Bayes and Chou's pseudo amino acid composition. Jia C; Lin X; Wang Z Int J Mol Sci; 2014 Jun; 15(6):10410-23. PubMed ID: 24918295 [TBL] [Abstract][Full Text] [Related]
15. Computational Prediction and Analysis of Associations between Small Molecules and Binding-Associated S-Nitrosylation Sites. Huang G; Li J; Zhao C Molecules; 2018 Apr; 23(4):. PubMed ID: 29671802 [TBL] [Abstract][Full Text] [Related]
16. MDCAN-Lys: A Model for Predicting Succinylation Sites Based on Multilane Dense Convolutional Attention Network. Wang H; Zhao H; Yan Z; Zhao J; Han J Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34208298 [TBL] [Abstract][Full Text] [Related]
17. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. Xu Y; Shao XJ; Wu LY; Deng NY; Chou KC PeerJ; 2013; 1():e171. PubMed ID: 24109555 [TBL] [Abstract][Full Text] [Related]
18. Proteome-wide modulation of S-nitrosylation in Trypanosoma cruzi trypomastigotes upon interaction with the host extracellular matrix. Mule SN; Manchola NC; de Oliveira GS; Pereira M; Magalhães RDM; Teixeira AA; Colli W; Alves MJM; Palmisano G J Proteomics; 2021 Jan; 231():104020. PubMed ID: 33096306 [TBL] [Abstract][Full Text] [Related]
19. DeepPhos: prediction of protein phosphorylation sites with deep learning. Luo F; Wang M; Liu Y; Zhao XM; Li A Bioinformatics; 2019 Aug; 35(16):2766-2773. PubMed ID: 30601936 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences. Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]