These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38148825)

  • 1. Fuzzy-logic technique for gold mineralization prospecting using Landsat 9 OLI processing and fieldwork data in the Bibemi goldfield, north Cameroon.
    Ousmanou S; Fodoue Y; Wadjou JW; Kepnamou AD; Fozing EM; Kwékam M; Ikfi M
    Heliyon; 2024 Jan; 10(1):e23334. PubMed ID: 38148825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards better delineation of hydrothermal alterations via multi-sensor remote sensing and airborne geophysical data.
    Shebl A; Abdellatif M; Badawi M; Dawoud M; Fahil AS; Csámer Á
    Sci Rep; 2023 May; 13(1):7406. PubMed ID: 37149689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The geochemistry, origin, and hydrothermal alteration mapping associated with the gold-bearing quartz veins at Hamash district, South Eastern Desert, Egypt.
    Abdel-Rahman AM; El-Desoky HM; Shebl A; El-Awny H; Amer YZ; Csámer Á
    Sci Rep; 2023 Sep; 13(1):15058. PubMed ID: 37700069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using of airborne gamma-ray spectrometric data to the exposure of potassic alteration -recognition of alteration relates to gold mineralization.
    El-Sadek MA
    Appl Radiat Isot; 2022 Dec; 190():110511. PubMed ID: 36308978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineral resources prospecting by synthetic application of TM/ETM+, Quickbird and Hyperion data in the Hatu area, West Junggar, Xinjiang, China.
    Liu L; Zhou J; Jiang D; Zhuang D; Mansaray LR; Hu Z; Ji Z
    Sci Rep; 2016 Feb; 6():21851. PubMed ID: 26911195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of iron-bearing mineral assemblages in Nainarmalai granulite region, south India, based on satellite image processing and geochemical anomalies.
    P G; Roy P; T S; D K
    Environ Monit Assess; 2022 Oct; 194(12):866. PubMed ID: 36220992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithological discrimination and mineralogical mapping using Landsat-8 OLI and ASTER remote sensing data: Igoudrane region, jbel saghro, Anti Atlas, Morocco.
    Baid S; Tabit A; Algouti A; Algouti A; Nafouri I; Souddi S; Aboulfaraj A; Ezzahzi S; Elghouat A
    Heliyon; 2023 Jul; 9(7):e17363. PubMed ID: 37424592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman Spectroscopy Coupled with Reflectance Spectroscopy as a Tool for the Characterization of Key Hydrothermal Alteration Minerals in Epithermal Au-Ag Systems: Utility and Implications for Mineral Exploration.
    Arbiol C; Layne GD
    Appl Spectrosc; 2021 Dec; 75(12):1475-1496. PubMed ID: 34608818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IDENTIFICATION OF AREAS OF HIGH POTENTIAL-BEARING MINERALIZATIONS, EASTERN DESERT OF EGYPT: INSIGHTS FROM AIRBORNE GAMMA-RAY SPECTROMETRIC DATA.
    Abu Donia AM
    Radiat Prot Dosimetry; 2023 Mar; 199(4):294-311. PubMed ID: 36588455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landsat-8 data for chromite prospecting in the Logar Massif, Afghanistan.
    Abdelaziz R; Abd El-Rahman Y; Wilhelm S
    Heliyon; 2018 Feb; 4(2):e00542. PubMed ID: 29560456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity.
    Roy DP; Kovalskyy V; Zhang HK; Vermote EF; Yan L; Kumar SS; Egorov A
    Remote Sens Environ; 2016 Jan; Volume 185(Iss 1):57-70. PubMed ID: 32020954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree.
    Acharya TD; Lee DH; Yang IT; Lee JK
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27420067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural investigation of Zungeru-Kalangai fault zone and its environ, Nigeria using aeromagnetic and remote sensing data.
    Arogundade AB; Awoyemi MO; Hammed OS; Falade SC; Ajama OD
    Heliyon; 2022 Mar; 8(3):e09055. PubMed ID: 35287325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barren ground depressions, natural H
    Malvoisin B; Brunet F
    Sci Total Environ; 2023 Jan; 856(Pt 1):158969. PubMed ID: 36162584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of remote sensing to identify Copper-Lead-Zinc deposits in the Heiqia area of the West Kunlun Mountains, Chinas.
    Fan YH; Wang H
    Sci Rep; 2020 Jul; 10(1):12309. PubMed ID: 32704049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fuzzy inference systems for mineral prospectivity modeling-optimized using Monte Carlo simulations.
    Chudasama B
    MethodsX; 2022; 9():101629. PubMed ID: 35242613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI.
    Wang J; Ding J; Yu D; Teng D; He B; Chen X; Ge X; Zhang Z; Wang Y; Yang X; Shi T; Su F
    Sci Total Environ; 2020 Mar; 707():136092. PubMed ID: 31972911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aeromagnetic and digital elevation model constraints on the structural framework of southern margin of the Middle Niger Basin, Nigeria.
    Salawu NB
    Sci Rep; 2021 Nov; 11(1):21646. PubMed ID: 34737345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of giant iron oxide-copper-gold deposits by superimposed episodic hydrothermal pulses.
    Del Real I; Reich M; Simon AC; Deditius A; Barra F; Rodríguez-Mustafa MA; Thompson JFH; Roberts MP
    Sci Rep; 2023 Jul; 13(1):12041. PubMed ID: 37491481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of AVIRIS-NG hyperspectral images for mineral identification and mapping.
    Tripathi MK; Govil H
    Heliyon; 2019 Nov; 5(11):e02931. PubMed ID: 31844772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.