These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 38148858)

  • 61. Bacterial and Fungal Endophytes: Tiny Giants with Immense Beneficial Potential for Plant Growth and Sustainable Agricultural Productivity.
    Omomowo OI; Babalola OO
    Microorganisms; 2019 Oct; 7(11):. PubMed ID: 31652843
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Does plant-Microbe interaction confer stress tolerance in plants: A review?
    Kumar A; Verma JP
    Microbiol Res; 2018 Mar; 207():41-52. PubMed ID: 29458867
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Microbial inoculants: potential tool for sustainability of agricultural production systems.
    Sammauria R; Kumawat S; Kumawat P; Singh J; Jatwa TK
    Arch Microbiol; 2020 May; 202(4):677-693. PubMed ID: 31897539
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Encapsulation of Bacillus salmalaya 139SI using double coating biopolymer technique.
    Vejan P; Abdullah R; Khadiran T; Ismail S
    Lett Appl Microbiol; 2019 Jan; 68(1):56-63. PubMed ID: 30339728
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria.
    Zeng Q; Ding X; Wang J; Han X; Iqbal HMN; Bilal M
    Environ Sci Pollut Res Int; 2022 Jun; 29(30):45089-45106. PubMed ID: 35474421
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Unveiling the Potential of Bioinoculants and Nanoparticles in Sustainable Agriculture for Enhanced Plant Growth and Food Security.
    Karnwal A; Dohroo A; Malik T
    Biomed Res Int; 2023; 2023():6911851. PubMed ID: 38075309
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Aspects, problems and utilization of Arbuscular Mycorrhizal (AM) application as bio-fertilizer in sustainable agriculture.
    Kuila D; Ghosh S
    Curr Res Microb Sci; 2022; 3():100107. PubMed ID: 35169758
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sustainability of farmers' soil fertility management practices: a case study in the North China Plain.
    Zhen L; Zoebisch MA; Chen G; Feng Z
    J Environ Manage; 2006 Jun; 79(4):409-19. PubMed ID: 16337082
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture.
    Zhang P; Guo Z; Ullah S; Melagraki G; Afantitis A; Lynch I
    Nat Plants; 2021 Jul; 7(7):864-876. PubMed ID: 34168318
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nanobiosensors and nanoformulations in agriculture: new advances and challenges for sustainable agriculture.
    Miguel-Rojas C; Pérez-de-Luque A
    Emerg Top Life Sci; 2023 Dec; 7(2):229-238. PubMed ID: 37921102
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Assessment of biofertilizer use for sustainable agriculture in the Great Mekong Region.
    Atieno M; Herrmann L; Nguyen HT; Phan HT; Nguyen NK; Srean P; Than MM; Zhiyong R; Tittabutr P; Shutsrirung A; Bräu L; Lesueur D
    J Environ Manage; 2020 Dec; 275():111300. PubMed ID: 32871522
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Engineering root microbiomes for healthier crops and soils using beneficial, environmentally safe bacteria.
    Martínez-Hidalgo P; Maymon M; Pule-Meulenberg F; Hirsch AM
    Can J Microbiol; 2019 Feb; 65(2):91-104. PubMed ID: 30226998
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Co-culture development and bioformulation efficacy of psychrotrophic PGPRs to promote growth and development of Pea (Pisum sativum) plant.
    Anwar MS; Paliwal A; Firdous N; Verma A; Kumar A; Pande V
    J Gen Appl Microbiol; 2019 May; 65(2):88-95. PubMed ID: 30381611
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Impact of nanophos in agriculture to improve functional bacterial community and crop productivity.
    Chaudhary P; Chaudhary A; Parveen H; Rani A; Kumar G; Kumar R; Sharma A
    BMC Plant Biol; 2021 Nov; 21(1):519. PubMed ID: 34749648
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture.
    Alori ET; Glick BR; Babalola OO
    Front Microbiol; 2017; 8():971. PubMed ID: 28626450
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms.
    Saeed Q; Xiukang W; Haider FU; Kučerik J; Mumtaz MZ; Holatko J; Naseem M; Kintl A; Ejaz M; Naveed M; Brtnicky M; Mustafa A
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638870
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Phytomicrobiome for promoting sustainable agriculture and food security: Opportunities, challenges, and solutions.
    Chouhan GK; Verma JP; Jaiswal DK; Mukherjee A; Singh S; de Araujo Pereira AP; Liu H; Abd Allah EF; Singh BK
    Microbiol Res; 2021 Jul; 248():126763. PubMed ID: 33892241
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.
    Bhardwaj D; Ansari MW; Sahoo RK; Tuteja N
    Microb Cell Fact; 2014 May; 13():66. PubMed ID: 24885352
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Entomopathogen-based biopesticides: insights into unraveling their potential in insect pest management.
    Irsad ; Shahid M; Haq E; Mohamed A; Rizvi PQ; Kolanthasamy E
    Front Microbiol; 2023; 14():1208237. PubMed ID: 37564286
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future.
    Aloo BN; Tripathi V; Makumba BA; Mbega ER
    Front Plant Sci; 2022; 13():1002448. PubMed ID: 36186083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.