These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 38148997)

  • 1. Programming Deformations of 3D Microstructures: Opportunities Enabled by Magnetic Alignment of Liquid Crystalline Elastomers.
    Li S; Aizenberg M; Lerch MM; Aizenberg J
    Acc Mater Res; 2023 Dec; 4(12):1008-1019. PubMed ID: 38148997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembled Microactuators Using Chiral Liquid Crystal Elastomers.
    Lee YJ; Abdelrahman MK; Kalairaj MS; Ware TH
    Small; 2023 Oct; 19(41):e2302774. PubMed ID: 37291979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-form Light Actuators - Fabrication and Control of Actuation in Microscopic Scale.
    Zeng H; Wasylczyk P; Parmeggiani C; Martella D; Wiersma DS
    J Vis Exp; 2016 May; (111):. PubMed ID: 27285398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Microstructures of Liquid Crystal Networks with Programmed Voxelated Director Fields.
    Guo Y; Shahsavan H; Sitti M
    Adv Mater; 2020 Sep; 32(38):e2002753. PubMed ID: 32767434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiresponsive polymeric microstructures with encoded predetermined and self-regulated deformability.
    Yao Y; Waters JT; Shneidman AV; Cui J; Wang X; Mandsberg NK; Li S; Balazs AC; Aizenberg J
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):12950-12955. PubMed ID: 30514819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling Liquid Crystal Orientations for Programmable Anisotropic Transformations in Cellular Microstructures.
    Li S; Librandi G; Yao Y; Richard AJ; Schneider-Yamamura A; Aizenberg J; Bertoldi K
    Adv Mater; 2021 Oct; 33(42):e2105024. PubMed ID: 34473379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing advances in liquid crystal elastomers provide a path to biomedical applications.
    Ambulo CP; Tasmim S; Wang S; Abdelrahman MK; Zimmern PE; Ware TH
    J Appl Phys; 2020 Oct; 128(14):140901. PubMed ID: 33060862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanically programmed 2D and 3D liquid crystal elastomers at macro- and microscale via two-step photocrosslinking.
    Lee J; Guo Y; Choi YJ; Jung S; Seol D; Choi S; Kim JH; Kim Y; Jeong KU; Ahn SK
    Soft Matter; 2020 Mar; 16(11):2695-2705. PubMed ID: 32057062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in 4D Printing of Liquid Crystal Elastomers.
    Chen M; Gao M; Bai L; Zheng H; Qi HJ; Zhou K
    Adv Mater; 2023 Jun; 35(23):e2209566. PubMed ID: 36461147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress in dynamic covalent chemistries for liquid crystal elastomers.
    Wang Z; Cai S
    J Mater Chem B; 2020 Aug; 8(31):6610-6623. PubMed ID: 32555841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired Liquid Crystalline Spinning Enables Scalable Fabrication of High-Performing Fibrous Artificial Muscles.
    Hou W; Wang J; Lv JA
    Adv Mater; 2023 Apr; 35(16):e2211800. PubMed ID: 36812485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional Adhesion of Monodomain Liquid Crystalline Elastomers.
    Pranda PA; Hedegaard A; Kim H; Clapper J; Nelson E; Hines L; Hayward RC; White TJ
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):6394-6402. PubMed ID: 38266384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3D-Printed Ferromagnetic Liquid Crystal Elastomer with Programmed Dual-Anisotropy and Multi-Responsiveness.
    Sun Y; Wang L; Zhu Z; Li X; Sun H; Zhao Y; Peng C; Liu J; Zhang S; Li M
    Adv Mater; 2023 Nov; 35(45):e2302824. PubMed ID: 37437184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discontinuous Metric Programming in Liquid Crystalline Elastomers.
    Hebner TS; Bowman RGA; Duffy D; Mostajeran C; Griniasty I; Cohen I; Warner M; Bowman CN; White TJ
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):11092-11098. PubMed ID: 36791283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable Complex Shape Changing of Polysiloxane Main-Chain Liquid Crystalline Elastomers.
    Zhang Y; Wang X; Yang W; Yan H; Zhang X; Han D; He Y; Li C; Sun L
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blueprinting Photothermal Shape-Morphing of Liquid Crystal Elastomers.
    Kuenstler AS; Chen Y; Bui P; Kim H; DeSimone A; Jin L; Hayward RC
    Adv Mater; 2020 Apr; 32(17):e2000609. PubMed ID: 32173919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid Crystal Elastomers with Enhanced Directional Actuation to Electric Fields.
    Fowler HE; Rothemund P; Keplinger C; White TJ
    Adv Mater; 2021 Oct; 33(43):e2103806. PubMed ID: 34510561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.
    Copic D; Park SJ; Tawfick S; De Volder M; Hart AJ
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22806089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.