BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38149419)

  • 1. ARCHERY: a prospective observational study of artificial intelligence-based radiotherapy treatment planning for cervical, head and neck and prostate cancer - study protocol.
    Aggarwal A; Court LE; Hoskin P; Jacques I; Kroiss M; Laskar S; Lievens Y; Mallick I; Abdul Malik R; Miles E; Mohamad I; Murphy C; Nankivell M; Parkes J; Parmar M; Roach C; Simonds H; Torode J; Vanderstraeten B; Langley R
    BMJ Open; 2023 Dec; 13(12):e077253. PubMed ID: 38149419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment plan comparison between helical tomotherapy and MLC-based IMRT using radiobiological measures.
    Mavroidis P; Ferreira BC; Shi C; Lind BK; Papanikolaou N
    Phys Med Biol; 2007 Jul; 52(13):3817-36. PubMed ID: 17664579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of auto-segmentation accuracy of cloud-based artificial intelligence and atlas-based models.
    Urago Y; Okamoto H; Kaneda T; Murakami N; Kashihara T; Takemori M; Nakayama H; Iijima K; Chiba T; Kuwahara J; Katsuta S; Nakamura S; Chang W; Saitoh H; Igaki H
    Radiat Oncol; 2021 Sep; 16(1):175. PubMed ID: 34503533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninferiority Study of Automated Knowledge-Based Planning Versus Human-Driven Optimization Across Multiple Disease Sites.
    Cornell M; Kaderka R; Hild SJ; Ray XJ; Murphy JD; Atwood TF; Moore KL
    Int J Radiat Oncol Biol Phys; 2020 Feb; 106(2):430-439. PubMed ID: 31678227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN).
    Li X; Wang C; Sheng Y; Zhang J; Wang W; Yin FF; Wu Q; Wu QJ; Ge Y
    Med Phys; 2021 Jun; 48(6):2714-2723. PubMed ID: 33577108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards artificial intelligence-based automated treatment planning in clinical practice: A prospective study of the first clinical experiences in high-dose-rate prostate brachytherapy.
    Barten DLJ; Pieters BR; Bouter A; van der Meer MC; Maree SC; Hinnen KA; Westerveld H; Bosman PAN; Alderliesten T; van Wieringen N; Bel A
    Brachytherapy; 2023; 22(2):279-289. PubMed ID: 36635201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence-supported applications in head and neck cancer radiotherapy treatment planning and dose optimisation.
    Ahervo H; Korhonen J; Lim Wei Ming S; Guan Yunqing F; Soini M; Lian Pei Ling C; Metsälä E
    Radiography (Lond); 2023 May; 29(3):496-502. PubMed ID: 36889022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of deep learning-based deliverable VMAT plan generated by prototype software for automated planning for prostate cancer patients.
    Kadoya N; Kimura Y; Tozuka R; Tanaka S; Arai K; Katsuta Y; Shimizu H; Sugai Y; Yamamoto T; Umezawa R; Jingu K
    J Radiat Res; 2023 Sep; 64(5):842-849. PubMed ID: 37607667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients.
    Sjöberg C; Lundmark M; Granberg C; Johansson S; Ahnesjö A; Montelius A
    Radiat Oncol; 2013 Oct; 8():229. PubMed ID: 24090107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic IMRT planning via static field fluence prediction (AIP-SFFP): a deep learning algorithm for real-time prostate treatment planning.
    Li X; Zhang J; Sheng Y; Chang Y; Yin FF; Ge Y; Wu QJ; Wang C
    Phys Med Biol; 2020 Sep; 65(17):175014. PubMed ID: 32663813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Emergence of Artificial Intelligence within Radiation Oncology Treatment Planning.
    Netherton TJ; Cardenas CE; Rhee DJ; Court LE; Beadle BM
    Oncology; 2021; 99(2):124-134. PubMed ID: 33352552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated contouring and planning pipeline for hippocampal-avoidant whole-brain radiotherapy.
    Feng CH; Cornell M; Moore KL; Karunamuni R; Seibert TM
    Radiat Oncol; 2020 Oct; 15(1):251. PubMed ID: 33126894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of an artificial intelligence guided inverse planning system: clinical case study.
    Yan H; Yin FF; Willett C
    Radiother Oncol; 2007 Apr; 83(1):76-85. PubMed ID: 17368843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positron emission tomography for radiation treatment planning.
    Grosu AL; Piert M; Weber WA; Jeremic B; Picchio M; Schratzenstaller U; Zimmermann FB; Schwaiger M; Molls M
    Strahlenther Onkol; 2005 Aug; 181(8):483-99. PubMed ID: 16044216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical Use of a Commercial Artificial Intelligence-Based Software for Autocontouring in Radiation Therapy: Geometric Performance and Dosimetric Impact.
    Hoque SMH; Pirrone G; Matrone F; Donofrio A; Fanetti G; Caroli A; Rista RS; Bortolus R; Avanzo M; Drigo A; Chiovati P
    Cancers (Basel); 2023 Dec; 15(24):. PubMed ID: 38136281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can the Adoption of Hypofractionation Guidelines Expand Global Radiotherapy Access? An Analysis for Breast and Prostate Radiotherapy.
    Irabor OC; Swanson W; Shaukat F; Wirtz J; Mallum AA; Ngoma T; Elzawawy A; Nguyen P; Incrocci L; Ngwa W
    JCO Glob Oncol; 2020 Apr; 6():667-678. PubMed ID: 32343628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy.
    Savenije MHF; Maspero M; Sikkes GG; van der Voort van Zyp JRN; T J Kotte AN; Bol GH; T van den Berg CA
    Radiat Oncol; 2020 May; 15(1):104. PubMed ID: 32393280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensity-modulated radiation therapy for pancreatic and prostate cancer using pulsed low-dose rate delivery techniques.
    Li J; Lang J; Wang P; Kang S; Lin MH; Chen X; Chen F; Guo M; Chen L; Ma CM
    Med Dosim; 2014; 39(4):330-6. PubMed ID: 25087084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.