These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 38149678)

  • 1. A review of genetic variant databases and machine learning tools for predicting the pathogenicity of breast cancer.
    Ahmad RM; Ali BR; Al-Jasmi F; Sinnott RO; Al Dhaheri N; Mohamad MS
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38149678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting breast cancer risk using interacting genetic and demographic factors and machine learning.
    Behravan H; Hartikainen JM; Tengström M; Kosma VM; Mannermaa A
    Sci Rep; 2020 Jul; 10(1):11044. PubMed ID: 32632202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AI-derived comparative assessment of the performance of pathogenicity prediction tools on missense variants of breast cancer genes.
    Ahmad RM; Ali BR; Al-Jasmi F; Al Dhaheri N; Al Turki S; Kizhakkedath P; Mohamad MS
    Hum Genomics; 2024 Sep; 18(1):99. PubMed ID: 39256852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Khandakji M; Habish HHA; Abdulla NBS; Kusasi SAA; Abdou NMG; Al-Mulla HMMA; Al Sulaiman RJAA; Bu Jassoum SM; Mifsud B
    Physiol Genomics; 2023 Aug; 55(8):315-323. PubMed ID: 37335020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene-specific machine learning for pathogenicity prediction of rare BRCA1 and BRCA2 missense variants.
    Kang M; Kim S; Lee DB; Hong C; Hwang KB
    Sci Rep; 2023 Jun; 13(1):10478. PubMed ID: 37380723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene-specific machine learning model to predict the pathogenicity of
    Khandakji MN; Mifsud B
    Front Genet; 2022; 13():982930. PubMed ID: 36246618
    [No Abstract]   [Full Text] [Related]  

  • 8. Early breast cancer risk detection: a novel framework leveraging polygenic risk scores and machine learning.
    Tao LR; Ye Y; Zhao H
    J Med Genet; 2023 Oct; 60(10):960-964. PubMed ID: 37055164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAGPIE: accurate pathogenic prediction for multiple variant types using machine learning approach.
    Liu Y; Zhang T; You N; Wu S; Shen N
    Genome Med; 2024 Jan; 16(1):3. PubMed ID: 38185709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are machine learning based methods suited to address complex biological problems? Lessons from CAGI-5 challenges.
    Savojardo C; Babbi G; Bovo S; Capriotti E; Martelli PL; Casadio R
    Hum Mutat; 2019 Sep; 40(9):1455-1462. PubMed ID: 31066146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning for the prediction of sepsis-related death: a systematic review and meta-analysis.
    Zhang Y; Xu W; Yang P; Zhang A
    BMC Med Inform Decis Mak; 2023 Dec; 23(1):283. PubMed ID: 38082381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants.
    Alirezaie N; Kernohan KD; Hartley T; Majewski J; Hocking TD
    Am J Hum Genet; 2018 Oct; 103(4):474-483. PubMed ID: 30220433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting breast cancer 5-year survival using machine learning: A systematic review.
    Li J; Zhou Z; Dong J; Fu Y; Li Y; Luan Z; Peng X
    PLoS One; 2021; 16(4):e0250370. PubMed ID: 33861809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of a machine learning method based on structural and locational information from AlphaFold2 for predicting the pathogenicity of TARDBP and FUS gene variants in ALS.
    Hatano Y; Ishihara T; Onodera O
    BMC Bioinformatics; 2023 May; 24(1):206. PubMed ID: 37208601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. mvPPT: A Highly Efficient and Sensitive Pathogenicity Prediction Tool for Missense Variants.
    Tong SY; Fan K; Zhou ZW; Liu LY; Zhang SQ; Fu Y; Wang GZ; Zhu Y; Yu YC
    Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):414-426. PubMed ID: 35940520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction models applying machine learning to oral cavity cancer outcomes: A systematic review.
    Adeoye J; Tan JY; Choi SW; Thomson P
    Int J Med Inform; 2021 Oct; 154():104557. PubMed ID: 34455119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Missense variant pathogenicity predictors generalize well across a range of function-specific prediction challenges.
    Pejaver V; Mooney SD; Radivojac P
    Hum Mutat; 2017 Sep; 38(9):1092-1108. PubMed ID: 28508593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting breast cancer risk using personal health data and machine learning models.
    Stark GF; Hart GR; Nartowt BJ; Deng J
    PLoS One; 2019; 14(12):e0226765. PubMed ID: 31881042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive value of machine learning for breast cancer recurrence: a systematic review and meta-analysis.
    Lu D; Long X; Fu W; Liu B; Zhou X; Sun S
    J Cancer Res Clin Oncol; 2023 Sep; 149(12):10659-10674. PubMed ID: 37302114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SHINE: protein language model-based pathogenicity prediction for short inframe insertion and deletion variants.
    Fan X; Pan H; Tian A; Chung WK; Shen Y
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36575831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.