These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 38149996)

  • 21. The ETS-5 transcription factor regulates activity states in
    Juozaityte V; Pladevall-Morera D; Podolska A; Nørgaard S; Neumann B; Pocock R
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):E1651-E1658. PubMed ID: 28193866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The OptoGenBox - a device for long-term optogenetics in
    Busack I; Jordan F; Sapir P; Bringmann H
    J Neurogenet; 2020; 34(3-4):466-474. PubMed ID: 32543249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. d-Serine and d-Alanine Regulate Adaptive Foraging Behavior in
    Saitoh Y; Katane M; Miyamoto T; Sekine M; Sakai-Kato K; Homma H
    J Neurosci; 2020 Sep; 40(39):7531-7544. PubMed ID: 32855271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compartmentalized cGMP Responses of Olfactory Sensory Neurons in
    Shidara H; Hotta K; Oka K
    J Neurosci; 2017 Apr; 37(14):3753-3763. PubMed ID: 28270568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sex-specific, pdfr-1-dependent modulation of pheromone avoidance by food abundance enables flexibility in C. elegans foraging behavior.
    Luo J; Portman DS
    Curr Biol; 2021 Oct; 31(20):4449-4461.e4. PubMed ID: 34437843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. C. elegans Males Integrate Food Signals and Biological Sex to Modulate State-Dependent Chemosensation and Behavioral Prioritization.
    Wexler LR; Miller RM; Portman DS
    Curr Biol; 2020 Jul; 30(14):2695-2706.e4. PubMed ID: 32531276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measuring
    Ding SS; Romenskyy M; Sarkisyan KS; Brown AEX
    Genetics; 2020 Mar; 214(3):577-587. PubMed ID: 31911453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular and sensory basis of a food related two-state behavior in C. elegans.
    Ben Arous J; Laffont S; Chatenay D
    PLoS One; 2009 Oct; 4(10):e7584. PubMed ID: 19851507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DOP-2 D2-Like Receptor Regulates UNC-7 Innexins to Attenuate Recurrent Sensory Motor Neurons during C. elegans Copulation.
    Correa PA; Gruninger T; García LR
    J Neurosci; 2015 Jul; 35(27):9990-10004. PubMed ID: 26156999
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Irrational behavior in C. elegans arises from asymmetric modulatory effects within single sensory neurons.
    Iwanir S; Ruach R; Itskovits E; Pritz CO; Bokman E; Zaslaver A
    Nat Commun; 2019 Jul; 10(1):3202. PubMed ID: 31324786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specific sensory neurons and insulin-like peptides modulate food type-dependent oogenesis and fertilization in
    Mishra S; Dabaja M; Akhlaq A; Pereira B; Marbach K; Rovcanin M; Chandra R; Caballero A; Fernandes de Abreu D; Ch'ng Q; Alcedo J
    Elife; 2023 Nov; 12():. PubMed ID: 37975568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensory regulation of C. elegans male mate-searching behavior.
    Barrios A; Nurrish S; Emmons SW
    Curr Biol; 2008 Dec; 18(23):1865-71. PubMed ID: 19062284
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interneuron control of C. elegans developmental decision-making.
    Chai CM; Torkashvand M; Seyedolmohadesin M; Park H; Venkatachalam V; Sternberg PW
    Curr Biol; 2022 May; 32(10):2316-2324.e4. PubMed ID: 35447086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sleep Analysis in Adult
    Lawler DE; Chew YL; Hawk JD; Aljobeh A; Schafer WR; Albrecht DR
    J Neurosci; 2021 Mar; 41(9):1892-1907. PubMed ID: 33446520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identified Serotonin-Releasing Neurons Induce Behavioral Quiescence and Suppress Mating in Drosophila.
    Pooryasin A; Fiala A
    J Neurosci; 2015 Sep; 35(37):12792-812. PubMed ID: 26377467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cyclic nucleotide gated channel subunit CNG-1 instructs behavioral outputs in Caenorhabditis elegans by coincidence detection of nutritional status and olfactory input.
    He C; Altshuler-Keylin S; Daniel D; L'Etoile ND; O'Halloran D
    Neurosci Lett; 2016 Oct; 632():71-8. PubMed ID: 27561605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Caenorhabditis elegans allatostatin/galanin-like receptor NPR-9 inhibits local search behavior in response to feeding cues.
    Bendena WG; Boudreau JR; Papanicolaou T; Maltby M; Tobe SS; Chin-Sang ID
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1339-42. PubMed ID: 18216257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans.
    Bretscher AJ; Busch KE; de Bono M
    Proc Natl Acad Sci U S A; 2008 Jun; 105(23):8044-9. PubMed ID: 18524954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diverse states and stimuli tune olfactory receptor expression levels to modulate food-seeking behavior.
    McLachlan IG; Kramer TS; Dua M; DiLoreto EM; Gomes MA; Dag U; Srinivasan J; Flavell SW
    Elife; 2022 Aug; 11():. PubMed ID: 36044259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parallel Multimodal Circuits Control an Innate Foraging Behavior.
    López-Cruz A; Sordillo A; Pokala N; Liu Q; McGrath PT; Bargmann CI
    Neuron; 2019 Apr; 102(2):407-419.e8. PubMed ID: 30824353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.