BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 3815010)

  • 1. Accuracy and precision in the measurement of relaxation times from nuclear magnetic resonance images.
    Johnson G; Ormerod IE; Barnes D; Tofts PS; MacManus D
    Br J Radiol; 1987 Feb; 60(710):143-53. PubMed ID: 3815010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of NMR relaxation times using the minimum number of scans.
    Johnson G; Ormerod IE; Tofts PS; Barnes D; du Boulay EP
    Acta Radiol Suppl; 1986; 369():496-9. PubMed ID: 2980539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density.
    Krauss W; Gunnarsson M; Andersson T; Thunberg P
    Magn Reson Imaging; 2015 Jun; 33(5):584-91. PubMed ID: 25708264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral abnormalities: use of calculated T1 and T2 magnetic resonance images for diagnosis.
    Mills CM; Crooks LE; Kaufman L; Brant-Zawadzki M
    Radiology; 1984 Jan; 150(1):87-94. PubMed ID: 6689792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic?
    Bottomley PA; Hardy CJ; Argersinger RE; Allen-Moore G
    Med Phys; 1987; 14(1):1-37. PubMed ID: 3031439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo evaluation of the reproducibility of T1 and T2 measured in the brain of patients with multiple sclerosis.
    Larsson HB; Christiansen P; Zeeberg I; Henriksen O
    Magn Reson Imaging; 1992; 10(4):579-84. PubMed ID: 1501528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance imaging relaxation times of female reproductive organs.
    Takatsu Y; Okada T; Miyati T; Koyama T
    Acta Radiol; 2015 Aug; 56(8):997-1001. PubMed ID: 25210077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproducibility of T1 and T2 relaxation times calculated from routine MR imaging sequences: phantom study.
    Kjos BO; Ehman RL; Brant-Zawadzki M
    AJR Am J Roentgenol; 1985 Jun; 144(6):1157-63. PubMed ID: 2988317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision, accuracy, and image plane uniformity in NMR relaxation time imaging on a 1.5 T whole-body MR imaging system.
    Andersen C; Jensen FT
    Magn Reson Imaging; 1994; 12(5):775-84. PubMed ID: 7934664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproducibility of relaxation and spin-density parameters in phantoms and the human brain measured by MR imaging at 1.5 T.
    Breger RK; Wehrli FW; Charles HC; MacFall JR; Haughton VM
    Magn Reson Med; 1986 Oct; 3(5):649-62. PubMed ID: 3784884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results.
    de Bazelaire CM; Duhamel GD; Rofsky NM; Alsop DC
    Radiology; 2004 Mar; 230(3):652-9. PubMed ID: 14990831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1H metabolite relaxation times at 3.0 tesla: Measurements of T1 and T2 values in normal brain and determination of regional differences in transverse relaxation.
    Träber F; Block W; Lamerichs R; Gieseke J; Schild HH
    J Magn Reson Imaging; 2004 May; 19(5):537-45. PubMed ID: 15112302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative magnetic resonance methods for in vivo investigation of the human liver and spleen. Technical aspects and preliminary clinical results.
    Thomsen C
    Acta Radiol Suppl; 1996; 401():1-34. PubMed ID: 8604619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective.
    Jara H; Sakai O; Mankal P; Irving RP; Norbash AM
    Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvements in the clinical utility of calculated T2 images of the human brain.
    Jackson JA; Schneiders NJ; Ford JJ; Bryan RN
    Magn Reson Imaging; 1985; 3(2):131-43. PubMed ID: 4033377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of relaxation time measurements by magnetic resonance imaging. A phantom study.
    Kjaer L; Thomsen C; Henriksen O; Ring P; Stubgaard M; Pedersen EJ
    Acta Radiol; 1987; 28(3):345-51. PubMed ID: 2958044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage.
    Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S
    Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of tissue damage in multiple sclerosis by nuclear magnetic resonance.
    Barkhof F; van Walderveen M
    Philos Trans R Soc Lond B Biol Sci; 1999 Oct; 354(1390):1675-86. PubMed ID: 10603619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast.
    Gold GE; Han E; Stainsby J; Wright G; Brittain J; Beaulieu C
    AJR Am J Roentgenol; 2004 Aug; 183(2):343-51. PubMed ID: 15269023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of T
    Damen M; van Leeuwen M; Webb A; Klomp D; de Castro CA
    MAGMA; 2019 Dec; 32(6):703-708. PubMed ID: 31317369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.