BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38150111)

  • 1. Automated identification of protein expression intensity and classification of protein cellular locations in mouse brain regions from immunofluorescence images.
    Bao LX; Luo ZM; Zhu XL; Xu YY
    Med Biol Eng Comput; 2024 Apr; 62(4):1105-1119. PubMed ID: 38150111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic recognition of protein subcellular location patterns in single cells from immunofluorescence images based on deep learning.
    Zhu XL; Bao LX; Xue MQ; Xu YY
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36577448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Astrocyte regional heterogeneity revealed through machine learning-based glial neuroanatomical assays.
    Blackburn J; Alves MJ; Aslan MT; Cevik L; Zhao J; Czeisler CM; Otero JJ
    J Comp Neurol; 2021 Jul; 529(10):2464-2483. PubMed ID: 33410136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilizing supervised machine learning to identify microglia and astrocytes in situ: implications for large-scale image analysis and quantification.
    Liu M; Ylanko J; Weekman E; Beckett T; Andrews D; McLaurin J
    J Neurosci Methods; 2019 Dec; 328():108424. PubMed ID: 31494186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated classification of protein expression levels in immunohistochemistry images to improve the detection of cancer biomarkers.
    Xue ZZ; Li C; Luo ZM; Wang SS; Xu YY
    BMC Bioinformatics; 2022 Nov; 23(1):470. PubMed ID: 36348299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-slice Alzheimer's disease classification and disease regional analysis with Supervised Switching Autoencoders.
    Mendoza-Léon R; Puentes J; Uriza LF; Hernández Hoyos M
    Comput Biol Med; 2020 Jan; 116():103527. PubMed ID: 31765915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From pixels to insights: Machine learning and deep learning for bioimage analysis.
    Jan M; Spangaro A; Lenartowicz M; Mattiazzi Usaj M
    Bioessays; 2024 Feb; 46(2):e2300114. PubMed ID: 38058114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weakly supervised learning for classification of lung cytological images using attention-based multiple instance learning.
    Teramoto A; Kiriyama Y; Tsukamoto T; Sakurai E; Michiba A; Imaizumi K; Saito K; Fujita H
    Sci Rep; 2021 Oct; 11(1):20317. PubMed ID: 34645863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CytoCensus, mapping cell identity and division in tissues and organs using machine learning.
    Hailstone M; Waithe D; Samuels TJ; Yang L; Costello I; Arava Y; Robertson E; Parton RM; Davis I
    Elife; 2020 May; 9():. PubMed ID: 32423529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RegQCNET: Deep quality control for image-to-template brain MRI affine registration.
    Denis de Senneville B; Manjón JV; Coupé P
    Phys Med Biol; 2020 Nov; 65(22):225022. PubMed ID: 32906089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated interpretation of subcellular patterns from immunofluorescence microscopy.
    Hu Y; Murphy RF
    J Immunol Methods; 2004 Jul; 290(1-2):93-105. PubMed ID: 15261574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated analysis of small animal PET studies through deformable registration to an atlas.
    Gutierrez DF; Zaidi H
    Eur J Nucl Med Mol Imaging; 2012 Nov; 39(11):1807-20. PubMed ID: 22820650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated glioma grading on conventional MRI images using deep convolutional neural networks.
    Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW
    Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AutoIHC-Analyzer: computer-assisted microscopy for automated membrane extraction/scoring in HER2 molecular markers.
    Tewary S; Arun I; Ahmed R; Chatterjee S; Mukhopadhyay S
    J Microsc; 2021 Jan; 281(1):87-96. PubMed ID: 32803890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast automated cell phenotype image classification.
    Hamilton NA; Pantelic RS; Hanson K; Teasdale RD
    BMC Bioinformatics; 2007 Mar; 8():110. PubMed ID: 17394669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatically identifying and annotating mouse embryo gene expression patterns.
    Han L; van Hemert JI; Baldock RA
    Bioinformatics; 2011 Apr; 27(8):1101-7. PubMed ID: 21357576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlocal atlas-guided multi-channel forest learning for human brain labeling.
    Ma G; Gao Y; Wu G; Wu L; Shen D
    Med Phys; 2016 Feb; 43(2):1003-19. PubMed ID: 26843260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving segmentation and classification of renal tumors in small sample 3D CT images using transfer learning with convolutional neural networks.
    Zhu XL; Shen HB; Sun H; Duan LX; Xu YY
    Int J Comput Assist Radiol Surg; 2022 Jul; 17(7):1303-1311. PubMed ID: 35290645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.