These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38150143)

  • 1. Prediction of locally advanced rectal cancer response to neoadjuvant chemoradiation therapy using volumetric multiparametric MRI-based radiomics.
    El Homsi M; Bane O; Fauveau V; Hectors S; Vietti Violi N; Sylla P; Ko HB; Cuevas J; Carbonell G; Nehlsen A; Vanguri R; Viswanath S; Jambawalikar S; Shaish H; Taouli B
    Abdom Radiol (NY); 2024 Mar; 49(3):791-800. PubMed ID: 38150143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study.
    Shaish H; Aukerman A; Vanguri R; Spinelli A; Armenta P; Jambawalikar S; Makkar J; Bentley-Hibbert S; Del Portillo A; Kiran R; Monti L; Bonifacio C; Kirienko M; Gardner KL; Schwartz L; Keller D
    Eur Radiol; 2020 Nov; 30(11):6263-6273. PubMed ID: 32500192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy.
    Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S
    Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of pathological response and lymph node metastasis after neoadjuvant therapy in rectal cancer through tumor and mesorectal MRI radiomic features.
    Qin S; Liu K; Chen Y; Zhou Y; Zhao W; Yan R; Xin P; Zhu Y; Wang H; Lang N
    Sci Rep; 2024 Sep; 14(1):21927. PubMed ID: 39304726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics].
    Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L
    Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172
    [No Abstract]   [Full Text] [Related]  

  • 6. Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer.
    Cheng Y; Luo Y; Hu Y; Zhang Z; Wang X; Yu Q; Liu G; Cui E; Yu T; Jiang X
    Abdom Radiol (NY); 2021 Nov; 46(11):5072-5085. PubMed ID: 34302510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Wan L; Peng W; Zou S; Ye F; Geng Y; Ouyang H; Zhao X; Zhang H
    Acad Radiol; 2021 Nov; 28 Suppl 1():S95-S104. PubMed ID: 33189550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics of locally advanced rectal cancer: machine learning-based prediction of response to neoadjuvant chemoradiotherapy using pre-treatment sagittal T2-weighted MRI.
    Yardimci AH; Kocak B; Sel I; Bulut H; Bektas CT; Cin M; Dursun N; Bektas H; Mermut O; Yardimci VH; Kilickesmez O
    Jpn J Radiol; 2023 Jan; 41(1):71-82. PubMed ID: 35962933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI-Based Radiomic Models Outperform Radiologists in Predicting Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer.
    Wen L; Liu J; Hu P; Bi F; Liu S; Jian L; Zhu S; Nie S; Cao F; Lu Q; Yu X; Liu K
    Acad Radiol; 2023 Sep; 30 Suppl 1():S176-S184. PubMed ID: 36739228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI.
    Shi L; Zhang Y; Nie K; Sun X; Niu T; Yue N; Kwong T; Chang P; Chow D; Chen JH; Su MY
    Magn Reson Imaging; 2019 Sep; 61():33-40. PubMed ID: 31059768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and external validation of a multiparametric MRI-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer: a retrospective multicenter study.
    Li Z; Zhang J; Zhong Q; Feng Z; Shi Y; Xu L; Zhang R; Yu F; Lv B; Yang T; Huang C; Cui F; Chen F
    Eur Radiol; 2023 Mar; 33(3):1835-1843. PubMed ID: 36282309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI radiomics signature to predict lymph node metastasis after neoadjuvant chemoradiation therapy in locally advanced rectal cancer.
    Fang Z; Pu H; Chen XL; Yuan Y; Zhang F; Li H
    Abdom Radiol (NY); 2023 Jul; 48(7):2270-2283. PubMed ID: 37085730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X
    Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based radiomic features for improving neoadjuvant chemoradiation response prediction in locally advanced rectal cancer.
    Fu J; Zhong X; Li N; Van Dams R; Lewis J; Sung K; Raldow AC; Jin J; Qi XS
    Phys Med Biol; 2020 Apr; 65(7):075001. PubMed ID: 32092710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer.
    Jayaprakasam VS; Paroder V; Gibbs P; Bajwa R; Gangai N; Sosa RE; Petkovska I; Golia Pernicka JS; Fuqua JL; Bates DDB; Weiser MR; Cercek A; Gollub MJ
    Eur Radiol; 2022 Feb; 32(2):971-980. PubMed ID: 34327580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based multiparametric MRI radiomics for predicting poor responders after neoadjuvant chemoradiotherapy in rectal Cancer patients.
    Wang J; Chen J; Zhou R; Gao Y; Li J
    BMC Cancer; 2022 Apr; 22(1):420. PubMed ID: 35439946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Prediction Model Based on MRI Radiomics and Clinical Factors to Predict Tumor Response After Neoadjuvant Chemoradiotherapy in Rectal Cancer.
    Jiang H; Guo W; Yu Z; Lin X; Zhang M; Jiang H; Zhang H; Sun Z; Li J; Yu Y; Zhao S; Hu H
    Acad Radiol; 2023 Sep; 30 Suppl 1():S185-S198. PubMed ID: 37394412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer.
    Li Y; Liu W; Pei Q; Zhao L; Güngör C; Zhu H; Song X; Li C; Zhou Z; Xu Y; Wang D; Tan F; Yang P; Pei H
    Cancer Med; 2019 Dec; 8(17):7244-7252. PubMed ID: 31642204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Construction of a model based on multipoint full-layer puncture biopsy for predicting pathological complete response after neoadjuvant therapy for locally advanced rectal cancer].
    Jin Y; Zhai ZW; Sun LT; Xia PD; Hu H; Jiang CQ; Zhao BC; Qu H; Qian Q; Dai Y; Yao HW; Wang ZJ; Han JG
    Zhonghua Wei Chang Wai Ke Za Zhi; 2024 Apr; 27(4):403-411. PubMed ID: 38644246
    [No Abstract]   [Full Text] [Related]  

  • 20. Can Pretreatment MRI and Planning CT Radiomics Improve Prediction of Complete Pathological Response in Locally Advanced Rectal Cancer Following Neoadjuvant Treatment?
    Ramireddy JK; Sathya A; Sasidharan BK; Varghese AJ; Sathyamurthy A; John NO; Chandramohan A; Singh A; Joel A; Mittal R; Masih D; Varghese K; Rebekah G; Ram TS; Thomas HMT
    J Gastrointest Cancer; 2024 Sep; 55(3):1199-1211. PubMed ID: 38856797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.