BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38150309)

  • 21. Interaction of specific temporal phase relations of circadian neural oscillations and long term photoperiodic responses in Japanese quail, Coturnix coturnix japonica.
    Yadav S; Chaturvedi CM
    Gen Comp Endocrinol; 2015; 217-218():54-61. PubMed ID: 25801549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of temperature modulation in mammalian seasonal timing.
    van Rosmalen L; van Dalum J; Appenroth D; Roodenrijs RTM; de Wit L; Hazlerigg DG; Hut RA
    FASEB J; 2021 May; 35(5):e21605. PubMed ID: 33913553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seasonality in tropical birds.
    Renthlei Z; Yatung S; Lalpekhlui R; Trivedi AK
    J Exp Zool A Ecol Integr Physiol; 2022 Dec; 337(9-10):952-966. PubMed ID: 35982509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoperiodic regulation of seasonal breeding in birds.
    Sharp PJ
    Ann N Y Acad Sci; 2005 Apr; 1040():189-99. PubMed ID: 15891024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thyroid hormone and seasonal regulation of reproduction.
    Yoshimura T
    Front Neuroendocrinol; 2013 Aug; 34(3):157-66. PubMed ID: 23660390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of annual reproductive cycle in the subtropical house sparrow (Passer domesticus): evidence for conservation of photoperiodic control mechanisms in birds.
    Trivedi AK; Rani S; Kumar V
    Front Zool; 2006 Aug; 3():12. PubMed ID: 16923197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seasonal time measurement during reproduction.
    Ikegami K; Yoshimura T
    J Reprod Dev; 2013; 59(4):327-33. PubMed ID: 23965600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoperiod-independent changes in immunoreactive brain gonadotropin-releasing hormone (GnRH) in a free-living, tropical bird.
    Moore IT; Bentley GE; Wotus C; Wingfield JC
    Brain Behav Evol; 2006; 68(1):37-44. PubMed ID: 16675899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A unifying hypothesis for control of body weight and reproduction in seasonally breeding mammals.
    Helfer G; Barrett P; Morgan PJ
    J Neuroendocrinol; 2019 Mar; 31(3):e12680. PubMed ID: 30585661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Apoptotic mechanism behind the testicular atrophy in photorefractory and scotosensitive quail: Involvement of GnIH induced p-53 dependent Bax-Caspase-3 mediated pathway.
    Banerjee S; Chaturvedi CM
    J Photochem Photobiol B; 2017 Nov; 176():124-135. PubMed ID: 28992606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoperiod as a proximate factor in control of seasonality in the subtropical male Tree Sparrow, Passer montanus.
    Dixit AS; Singh NS
    Front Zool; 2011 Jan; 8(1):1. PubMed ID: 21223557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Timing of seasonal breeding in birds, with particular reference to New Zealand birds.
    Cockrem JF
    Reprod Fertil Dev; 1995; 7(1):1-19. PubMed ID: 7569047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A circannual clock drives expression of genes central for seasonal reproduction.
    Sáenz de Miera C; Monecke S; Bartzen-Sprauer J; Laran-Chich MP; Pévet P; Hazlerigg DG; Simonneaux V
    Curr Biol; 2014 Jul; 24(13):1500-6. PubMed ID: 24980500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Melatonin-independent Photoperiodic Entrainment of the Circannual TSH Rhythm in the Pars Tuberalis of the European Hamster.
    Sáenz de Miera C; Sage-Ciocca D; Simonneaux V; Pévet P; Monecke S
    J Biol Rhythms; 2018 Jun; 33(3):302-317. PubMed ID: 29618281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seasonal Rhythms: The Role of Thyrotropin and Thyroid Hormones.
    Nakayama T; Yoshimura T
    Thyroid; 2018 Jan; 28(1):4-10. PubMed ID: 28874095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.
    Ikegami K; Yoshimura T
    Gen Comp Endocrinol; 2016 Feb; 227():64-8. PubMed ID: 26050562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoperiodic physiology of summer breeding birds and a search for the role of eye.
    Majumdar G; Yadav G; Singh NS
    Photochem Photobiol Sci; 2024 Jan; 23(1):197-212. PubMed ID: 38038950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of surgical deafening and photoperiod on cloacal gland and testes size in Japanese quail.
    Kerlan JT; Blumenthal DC; Gilsdorf JT; Greenspon JM
    Gen Comp Endocrinol; 1988 Mar; 69(3):448-54. PubMed ID: 3360300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in plasma gonadotrophins, testosterone, prolactin, thyroxine and triiodothyronine concentrations in male Japanese quail (Coturnix coturnix japonica) of a heavy body weight line during photo-induced testicular growth and regression.
    Henare SJ; Kikuchi M; Talbot RT; Cockrem JF
    Br Poult Sci; 2011 Dec; 52(6):782-91. PubMed ID: 22221245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circadian clock genes and photoperiodism: Comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the suprachiasmatic nucleus, and the pineal gland of Japanese Quail under various light schedules.
    Yasuo S; Watanabe M; Okabayashi N; Ebihara S; Yoshimura T
    Endocrinology; 2003 Sep; 144(9):3742-8. PubMed ID: 12933643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.