These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38150421)

  • 21. Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables.
    Hashemian B; Millán D; Arroyo M
    J Chem Phys; 2013 Dec; 139(21):214101. PubMed ID: 24320358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations.
    Rydzewski J; Chen M; Ghosh TK; Valsson O
    J Chem Theory Comput; 2022 Dec; 18(12):7179-7192. PubMed ID: 36367826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Global Free-Energy Landscapes as a Smoothly Joined Collection of Local Maps.
    Giberti F; Tribello GA; Ceriotti M
    J Chem Theory Comput; 2021 Jun; 17(6):3292-3308. PubMed ID: 34003008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational methods for exploring protein conformations.
    Allison JR
    Biochem Soc Trans; 2020 Aug; 48(4):1707-1724. PubMed ID: 32756904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictive collective variable discovery with deep Bayesian models.
    Schöberl M; Zabaras N; Koutsourelakis PS
    J Chem Phys; 2019 Jan; 150(2):024109. PubMed ID: 30646713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reaction Path-Force Matching in Collective Variables: Determining Ab Initio QM/MM Free Energy Profiles by Fitting Mean Force.
    Kim B; Snyder R; Nagaraju M; Zhou Y; Ojeda-May P; Keeton S; Hege M; Shao Y; Pu J
    J Chem Theory Comput; 2021 Aug; 17(8):4961-4980. PubMed ID: 34283604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discovering Collective Variables of Molecular Transitions via Genetic Algorithms and Neural Networks.
    Hooft F; Pérez de Alba Ortíz A; Ensing B
    J Chem Theory Comput; 2021 Apr; 17(4):2294-2306. PubMed ID: 33662202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploration of high dimensional free energy landscapes by a combination of temperature-accelerated sliced sampling and parallel biasing.
    Gupta A; Verma S; Javed R; Sudhakar S; Srivastava S; Nair NN
    J Comput Chem; 2022 Jun; 43(17):1186-1200. PubMed ID: 35510789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free energy barriers from biased molecular dynamics simulations.
    Bal KM; Fukuhara S; Shibuta Y; Neyts EC
    J Chem Phys; 2020 Sep; 153(11):114118. PubMed ID: 32962376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unconstrained Enhanced Sampling for Free Energy Calculations of Biomolecules: A Review.
    Miao Y; McCammon JA
    Mol Simul; 2016; 42(13):1046-1055. PubMed ID: 27453631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiscale Reweighted Stochastic Embedding: Deep Learning of Collective Variables for Enhanced Sampling.
    Rydzewski J; Valsson O
    J Phys Chem A; 2021 Jul; 125(28):6286-6302. PubMed ID: 34213915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations.
    Van Speybroeck V; Bocus M; Cnudde P; Vanduyfhuys L
    ACS Catal; 2023 Sep; 13(17):11455-11493. PubMed ID: 37671178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined Force-Frequency Sampling for Simulation of Systems Having Rugged Free Energy Landscapes.
    Sevgen E; Guo AZ; Sidky H; Whitmer JK; de Pablo JJ
    J Chem Theory Comput; 2020 Mar; 16(3):1448-1455. PubMed ID: 31951703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chasing Collective Variables Using Autoencoders and Biased Trajectories.
    Belkacemi Z; Gkeka P; Lelièvre T; Stoltz G
    J Chem Theory Comput; 2022 Jan; 18(1):59-78. PubMed ID: 34965117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced sampling and free energy calculations for protein simulations.
    Liao Q
    Prog Mol Biol Transl Sci; 2020; 170():177-213. PubMed ID: 32145945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning Nucleation Collective Variables with Graph Neural Networks.
    Dietrich FM; Advincula XR; Gobbo G; Bellucci MA; Salvalaglio M
    J Chem Theory Comput; 2024 Feb; 20(4):1600-1611. PubMed ID: 37877821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment and optimization of collective variables for protein conformational landscape: GB1
    Ahalawat N; Mondal J
    J Chem Phys; 2018 Sep; 149(9):094101. PubMed ID: 30195312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multitask Machine Learning of Collective Variables for Enhanced Sampling of Rare Events.
    Sun L; Vandermause J; Batzner S; Xie Y; Clark D; Chen W; Kozinsky B
    J Chem Theory Comput; 2022 Apr; 18(4):2341-2353. PubMed ID: 35274958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the Performance of Machine Learning Models in Representing High-Dimensional Free Energy Surfaces and Generating Observables.
    Cendagorta JR; Tolpin J; Schneider E; Topper RQ; Tuckerman ME
    J Phys Chem B; 2020 May; 124(18):3647-3660. PubMed ID: 32275148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Permutationally Invariant Fitting of Many-Body, Non-covalent Interactions with Application to Three-Body Methane-Water-Water.
    Conte R; Qu C; Bowman JM
    J Chem Theory Comput; 2015 Apr; 11(4):1631-8. PubMed ID: 26574372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.