These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38150576)
21. [Tooth segmentation and identification on cone-beam computed tomography with convolutional neural network based on spatial embedding information]. Bo S; Gao C Beijing Da Xue Xue Bao Yi Xue Ban; 2024 Aug; 56(4):735-740. PubMed ID: 39041573 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of a prototype metal artifact reduction algorithm for cone beam CT in patients undergoing radioembolization. Can E; Böning G; Lüdemann WM; Hosse C; Kolck J; Paparoditis S; Nguyen T; Piper SK; Geisel D; Wieners G; Gebauer B; Elkilany A; Jonczyk M Sci Rep; 2024 Jul; 14(1):16399. PubMed ID: 39014057 [TBL] [Abstract][Full Text] [Related]
23. A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction. Shi Z; Wang N; Kong F; Cao H; Cao Q Med Phys; 2022 Jun; 49(6):3845-3859. PubMed ID: 35322430 [TBL] [Abstract][Full Text] [Related]
25. PDS-MAR: a fine-grained projection-domain segmentation-based metal artifact reduction method for intraoperative CBCT images with guidewires. Lyu T; Wu Z; Ma G; Jiang C; Zhong X; Xi Y; Chen Y; Zhu W Phys Med Biol; 2023 Oct; 68(21):. PubMed ID: 37802062 [No Abstract] [Full Text] [Related]
26. Efficient high cone-angle artifact reduction in circular cone-beam CT using deep learning with geometry-aware dimension reduction. Minnema J; van Eijnatten M; der Sarkissian H; Doyle S; Koivisto J; Wolff J; Forouzanfar T; Lucka F; Batenburg KJ Phys Med Biol; 2021 Jul; 66(13):. PubMed ID: 34107467 [TBL] [Abstract][Full Text] [Related]
27. DL-based inpainting for metal artifact reduction for cone beam CT using metal path length information. Gottschalk TM; Maier A; Kordon F; Kreher BW Med Phys; 2023 Jan; 50(1):128-141. PubMed ID: 35925029 [TBL] [Abstract][Full Text] [Related]
28. Deep learning method for reducing metal artifacts in dental cone-beam CT using supplementary information from intra-oral scan. Hyun CM; Bayaraa T; Yun HS; Jang TJ; Park HS; Seo JK Phys Med Biol; 2022 Aug; 67(17):. PubMed ID: 35944531 [No Abstract] [Full Text] [Related]
29. Feasibility of bone marrow edema detection using dual-energy cone-beam computed tomography. Liu SZ; Herbst M; Schaefer J; Weber T; Vogt S; Ritschl L; Kappler S; Kawcak CE; Stewart HL; Siewerdsen JH; Zbijewski W Med Phys; 2024 Mar; 51(3):1653-1673. PubMed ID: 38323878 [TBL] [Abstract][Full Text] [Related]
30. 4D liver tumor localization using cone-beam projections and a biomechanical model. Zhang Y; Folkert MR; Li B; Huang X; Meyer JJ; Chiu T; Lee P; Tehrani JN; Cai J; Parsons D; Jia X; Wang J Radiother Oncol; 2019 Apr; 133():183-192. PubMed ID: 30448003 [TBL] [Abstract][Full Text] [Related]
31. Fiducial marker recovery and detection from severely truncated data in navigation-assisted spine surgery. Fan F; Kreher B; Keil H; Maier A; Huang Y Med Phys; 2022 May; 49(5):2914-2930. PubMed ID: 35305271 [TBL] [Abstract][Full Text] [Related]
32. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT. Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286 [TBL] [Abstract][Full Text] [Related]
33. A learning-based method for online adjustment of C-arm Cone-beam CT source trajectories for artifact avoidance. Thies M; Zäch JN; Gao C; Taylor R; Navab N; Maier A; Unberath M Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1787-1796. PubMed ID: 32840721 [TBL] [Abstract][Full Text] [Related]
34. Deep learning-based segmentation in prostate radiation therapy using Monte Carlo simulated cone-beam computed tomography. Abbani N; Baudier T; Rit S; Franco FD; Okoli F; Jaouen V; Tilquin F; Barateau A; Simon A; de Crevoisier R; Bert J; Sarrut D Med Phys; 2022 Nov; 49(11):6930-6944. PubMed ID: 36000762 [TBL] [Abstract][Full Text] [Related]
35. MARGANVAC: metal artifact reduction method based on generative adversarial network with variable constraints. Li G; Ji L; You C; Gao S; Zhou L; Bai K; Luo S; Gu N Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37696272 [No Abstract] [Full Text] [Related]
36. Metal artifact reduction on cervical CT images by deep residual learning. Huang X; Wang J; Tang F; Zhong T; Zhang Y Biomed Eng Online; 2018 Nov; 17(1):175. PubMed ID: 30482231 [TBL] [Abstract][Full Text] [Related]
37. Convolutional neural network-based metal and streak artifacts reduction in dental CT images with sparse-view sampling scheme. Kim S; Ahn J; Kim B; Kim C; Baek J Med Phys; 2022 Sep; 49(9):6253-6277. PubMed ID: 35906986 [TBL] [Abstract][Full Text] [Related]
38. Reference-free learning-based similarity metric for motion compensation in cone-beam CT. Huang H; Siewerdsen JH; Zbijewski W; Weiss CR; Unberath M; Ehtiati T; Sisniega A Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35636391 [No Abstract] [Full Text] [Related]
39. Combining physics-based models with deep learning image synthesis and uncertainty in intraoperative cone-beam CT of the brain. Zhang X; Sisniega A; Zbijewski WB; Lee J; Jones CK; Wu P; Han R; Uneri A; Vagdargi P; Helm PA; Luciano M; Anderson WS; Siewerdsen JH Med Phys; 2023 May; 50(5):2607-2624. PubMed ID: 36906915 [TBL] [Abstract][Full Text] [Related]
40. Deep learning-based segmentation of dental implants on cone-beam computed tomography images: A validation study. Elgarba BM; Van Aelst S; Swaity A; Morgan N; Shujaat S; Jacobs R J Dent; 2023 Oct; 137():104639. PubMed ID: 37517787 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]