BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38150593)

  • 1. Crystal Structure, Steady-State, and Pre-Steady-State Kinetics of
    Read BJ; Cadzow AF; Alphey MS; Mitchell JBO; da Silva RG
    Biochemistry; 2024 Jan; 63(2):230-240. PubMed ID: 38150593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allosteric Activation Shifts the Rate-Limiting Step in a Short-Form ATP Phosphoribosyltransferase.
    Fisher G; Thomson CM; Stroek R; Czekster CM; Hirschi JS; da Silva RG
    Biochemistry; 2018 Jul; 57(29):4357-4367. PubMed ID: 29940105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and Structure of a Cold-Adapted Hetero-Octameric ATP Phosphoribosyltransferase.
    Stroek R; Ge Y; Talbot PD; Glok MK; Bernaś KE; Thomson CM; Gould ER; Alphey MS; Liu H; Florence GJ; Naismith JH; da Silva RG
    Biochemistry; 2017 Feb; 56(5):793-803. PubMed ID: 28092443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric Inhibition of
    Read BJ; Fisher G; Wissett OLR; Machado TFG; Nicholson J; Mitchell JBO; da Silva RG
    ACS Infect Dis; 2022 Jan; 8(1):197-209. PubMed ID: 34928596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the Structural Path for Allosteric Inhibition of a Short-Form ATP Phosphoribosyltransferase by Histidine.
    Thomson CM; Alphey MS; Fisher G; da Silva RG
    Biochemistry; 2019 Jul; 58(28):3078-3086. PubMed ID: 31251578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allosteric rescue of catalytically impaired ATP phosphoribosyltransferase variants links protein dynamics to active-site electrostatic preorganisation.
    Fisher G; Corbella M; Alphey MS; Nicholson J; Read BJ; Kamerlin SCL; da Silva RG
    Nat Commun; 2022 Dec; 13(1):7607. PubMed ID: 36494361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Cycle of the Bifunctional Enzyme Phosphoribosyl-ATP Pyrophosphohydrolase/Phosphoribosyl-AMP Cyclohydrolase.
    Fisher G; Pečaver E; Read BJ; Leese SK; Laing E; Dickson AL; Czekster CM; da Silva RG
    ACS Catal; 2023 Jun; 13(11):7669-7679. PubMed ID: 37288093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate recognition by the hetero-octameric ATP phosphoribosyltransferase from Lactococcus lactis.
    Champagne KS; Piscitelli E; Francklyn CS
    Biochemistry; 2006 Dec; 45(50):14933-43. PubMed ID: 17154531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allosteric activation unveils protein-mass modulation of ATP phosphoribosyltransferase product release.
    Read BJ; Mitchell JBO; da Silva RG
    Commun Chem; 2024 Apr; 7(1):77. PubMed ID: 38582930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent catalysis of the short form HisG from Lactococcus lactis.
    Livingstone EK; Mittelstädt G; Given FM; Parker EJ
    FEBS Lett; 2016 Aug; 590(16):2603-10. PubMed ID: 27393206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the hetero-octameric ATP phosphoribosyl transferase complex from Thermotoga maritima by a tRNA synthetase-like subunit.
    Vega MC; Zou P; Fernandez FJ; Murphy GE; Sterner R; Popov A; Wilmanns M
    Mol Microbiol; 2005 Feb; 55(3):675-86. PubMed ID: 15660995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dimeric catalytic core relates the short and long forms of ATP-phosphoribosyltransferase.
    Mittelstädt G; Jiao W; Livingstone EK; Moggré GJ; Nazmi AR; Parker EJ
    Biochem J; 2018 Jan; 475(1):247-260. PubMed ID: 29208762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of the hetero-octameric ATP phosphoribosyl transferase through subunit interface rearrangement by a tRNA synthetase paralog.
    Champagne KS; Sissler M; Larrabee Y; Doublié S; Francklyn CS
    J Biol Chem; 2005 Oct; 280(40):34096-104. PubMed ID: 16051603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ATP-linked structural change in protein kinase A precedes phosphoryl transfer under physiological magnesium concentrations.
    Shaffer J; Adams JA
    Biochemistry; 1999 Apr; 38(17):5572-81. PubMed ID: 10220345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-site kinetic mechanism for ATP binding and hydrolysis by E. coli Rep helicase dimer bound to a single-stranded oligodeoxynucleotide.
    Hsieh J; Moore KJ; Lohman TM
    J Mol Biol; 1999 Apr; 288(2):255-74. PubMed ID: 10329141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective determination of the catalytic cysteine pK
    Phonbuppha J; Maenpuen S; Munkajohnpong P; Chaiyen P; Tinikul R
    FEBS J; 2018 Jul; 285(13):2504-2519. PubMed ID: 29734522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Participation of ADP dissociation in the rate-determining step in cAMP-dependent protein kinase.
    Zhou J; Adams JA
    Biochemistry; 1997 Dec; 36(50):15733-8. PubMed ID: 9398302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic studies on the ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase. Evidence for the K.S.T. mechanism with two enzyme-ATP complexes and two phosphorylated intermediates of high-energy type.
    Yamaguchi M; Tonomura Y
    J Biochem; 1977 Jan; 81(1):249-60. PubMed ID: 14933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of adenosine 5'-triphosphate hydrolysis in the assembly of the bacteriophage T4 DNA replication holoenzyme complex.
    Berdis AJ; Benkovic SJ
    Biochemistry; 1996 Jul; 35(28):9253-65. PubMed ID: 8703931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.