BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38150773)

  • 1. Differences in the management of intracellular redox state between wine yeast species dictate their fermentation performances and metabolite production.
    Tyibilika V; Setati ME; Bloem A; Divol B; Camarasa C
    Int J Food Microbiol; 2024 Feb; 411():110537. PubMed ID: 38150773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox cofactor metabolism in Saccharomyces cerevisiae and its impact on the production of alcoholic fermentation end-products.
    Duncan JD; Setati ME; Divol B
    Food Res Int; 2023 Jan; 163():112276. PubMed ID: 36596186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae.
    Shekhawat K; Bauer FF; Setati ME
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2479-2491. PubMed ID: 27913851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific Phenotypic Traits of Starmerella bacillaris Related to Nitrogen Source Consumption and Central Carbon Metabolite Production during Wine Fermentation.
    Englezos V; Cocolin L; Rantsiou K; Ortiz-Julien A; Bloem A; Dequin S; Camarasa C
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29858207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen Preferences during Alcoholic Fermentation of Different Non-
    Roca-Mesa H; Sendra S; Mas A; Beltran G; Torija MJ
    Microorganisms; 2020 Jan; 8(2):. PubMed ID: 31979188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Indigenous Non-
    Castrillo D; Blanco P
    Front Biosci (Elite Ed); 2023 Jan; 15(1):1. PubMed ID: 36959102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of melatonin and tryptophol addition on fermentations carried out by Saccharomyces cerevisiae and non-Saccharomyces yeast species under different nitrogen conditions.
    Valera MJ; Morcillo-Parra MÁ; Zagórska I; Mas A; Beltran G; Torija MJ
    Int J Food Microbiol; 2019 Jan; 289():174-181. PubMed ID: 30253310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nicotinic acid availability impacts redox cofactor metabolism in Saccharomyces cerevisiae during alcoholic fermentation.
    Duncan JD; Setati ME; Divol B
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38637306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae.
    Celton M; Goelzer A; Camarasa C; Fromion V; Dequin S
    Metab Eng; 2012 Jul; 14(4):366-79. PubMed ID: 22709677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Impact of Redox Cofactor Perturbations on the Formation of Aroma Compounds in Saccharomyces cerevisiae.
    Bloem A; Sanchez I; Dequin S; Camarasa C
    Appl Environ Microbiol; 2016 Jan; 82(1):174-83. PubMed ID: 26475113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.
    Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ
    Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy.
    Binati RL; Lemos Junior WJF; Luzzini G; Slaghenaufi D; Ugliano M; Torriani S
    Int J Food Microbiol; 2020 Apr; 318():108470. PubMed ID: 31841784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast population dynamics reveal a potential 'collaboration' between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation.
    Contreras A; Curtin C; Varela C
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1885-95. PubMed ID: 25388943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the effect of using non-Saccharomyces on Oenococcus oeni and wine malolactic fermentation.
    Ferrando N; Araque I; Ortís A; Thornes G; Bautista-Gallego J; Bordons A; Reguant C
    Food Res Int; 2020 Dec; 138(Pt B):109779. PubMed ID: 33288165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative uptake of exogenous thiamine and subsequent metabolic footprint in Saccharomyces cerevisiae and Kluyveromyces marxianus under simulated oenological conditions.
    Labuschagne PWJ; Rollero S; Divol B
    Int J Food Microbiol; 2021 Sep; 354():109206. PubMed ID: 34088559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation.
    Kemsawasd V; Viana T; Ardö Y; Arneborg N
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10191-207. PubMed ID: 26257263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wine aroma evolution throughout alcoholic fermentation sequentially inoculated with non- Saccharomyces/Saccharomyces yeasts.
    Escribano-Viana R; González-Arenzana L; Portu J; Garijo P; López-Alfaro I; López R; Santamaría P; Gutiérrez AR
    Food Res Int; 2018 Oct; 112():17-24. PubMed ID: 30131125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen sources preferences of non-Saccharomyces yeasts to sustain growth and fermentation under winemaking conditions.
    Su Y; Seguinot P; Sanchez I; Ortiz-Julien A; Heras JM; Querol A; Camarasa C; Guillamón JM
    Food Microbiol; 2020 Feb; 85():103287. PubMed ID: 31500707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae.
    Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA
    Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wine aromatic compound production and fermentative behaviour within different non-Saccharomyces species and clones.
    Escribano R; González-Arenzana L; Portu J; Garijo P; López-Alfaro I; López R; Santamaría P; Gutiérrez AR
    J Appl Microbiol; 2018 Jun; 124(6):1521-1531. PubMed ID: 29457321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.