BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38150919)

  • 1. Recombinant humanized Fab fragments targeting the CFC domain of human Cripto-1.
    Sandomenico A; Selis F; Sivaccumar JP; Olimpieri P; Iaccarino E; Cicatiello V; Cantile M; Sanna R; Leonardi A; De Falco S; Ruvo M
    Biochem Biophys Res Commun; 2024 Jan; 694():149417. PubMed ID: 38150919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of conformational antibodies targeting Cripto-1 with neutralizing effects in vitro.
    Focà G; Iaccarino E; Focà A; Sanguigno L; Untiveros G; Cuevas-Nunez M; Strizzi L; Leonardi A; Ruvo M; Sandomenico A
    Biochimie; 2019 Mar; 158():246-256. PubMed ID: 30703478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Anti-Nodal Monoclonal Antibodies Targeting the Nodal Pre-Helix Loop Involved in Cripto-1 Binding.
    Focà A; Sanguigno L; Focà G; Strizzi L; Iannitti R; Palumbo R; Hendrix MJ; Leonardi A; Ruvo M; Sandomenico A
    Int J Mol Sci; 2015 Sep; 16(9):21342-62. PubMed ID: 26370966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers.
    Sandomenico A; Ruvo M
    Curr Med Chem; 2019; 26(11):1994-2050. PubMed ID: 30207211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo.
    Adkins HB; Bianco C; Schiffer SG; Rayhorn P; Zafari M; Cheung AE; Orozco O; Olson D; De Luca A; Chen LL; Miatkowski K; Benjamin C; Normanno N; Williams KP; Jarpe M; LePage D; Salomon D; Sanicola M
    J Clin Invest; 2003 Aug; 112(4):575-87. PubMed ID: 12925698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Artificially Humanized Anti-Cripto-1 Antibody Suppressing Cancer Cell Growth.
    Ishii H; Zahra MH; Takayanagi A; Seno M
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CRIPTO/FRL-1/CRYPTIC (CFC) domain of human Cripto. Functional and structural insights through disulfide structure analysis.
    Foley SF; van Vlijmen HW; Boynton RE; Adkins HB; Cheung AE; Singh J; Sanicola M; Young CN; Wen D
    Eur J Biochem; 2003 Sep; 270(17):3610-8. PubMed ID: 12919325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An antibody-cytotoxic conjugate, BIIB015, is a new targeted therapy for Cripto positive tumours.
    Kelly RK; Olson DL; Sun Y; Wen D; Wortham KA; Antognetti G; Cheung AE; Orozco OE; Yang L; Bailly V; Sanicola M
    Eur J Cancer; 2011 Jul; 47(11):1736-46. PubMed ID: 21458984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exogenous Cripto-1 Suppresses Self-Renewal of Cancer Stem Cell Model.
    Alam MJ; Takahashi R; Afify SM; Oo AKK; Kumon K; Nawara HM; Khayrani AC; Du J; Zahra MH; Seno A; Salomon DS; Seno M
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical and Cellular Analysis Reveals Ligand Binding Specificities, a Molecular Basis for Ligand Recognition, and Membrane Association-dependent Activities of Cripto-1 and Cryptic.
    Aykul S; Parenti A; Chu KY; Reske J; Floer M; Ralston A; Martinez-Hackert E
    J Biol Chem; 2017 Mar; 292(10):4138-4151. PubMed ID: 28126904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based design of small bicyclic peptide inhibitors of Cripto-1 activity.
    Iaccarino E; Calvanese L; Untiveros G; Falcigno L; D'Auria G; Latino D; Sivaccumar JP; Strizzi L; Ruvo M; Sandomenico A
    Biochem J; 2020 Apr; 477(8):1391-1407. PubMed ID: 32215602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cripto monoclonal antibodies.
    Hu XF; Xing PX
    Drug News Perspect; 2005 Jun; 18(5):293-303. PubMed ID: 16193101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cripto as a target for cancer immunotherapy.
    Hu XF; Xing PX
    Expert Opin Ther Targets; 2005 Apr; 9(2):383-94. PubMed ID: 15934922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual roles of Cripto as a ligand and coreceptor in the nodal signaling pathway.
    Yan YT; Liu JJ; Luo Y; E C; Haltiwanger RS; Abate-Shen C; Shen MM
    Mol Cell Biol; 2002 Jul; 22(13):4439-49. PubMed ID: 12052855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Cripto-1 in the tumorigenesis and progression of oral squamous cell carcinoma.
    Yoon HJ; Hong JS; Shin WJ; Lee YJ; Hong KO; Lee JI; Hong SP; Hong SD
    Oral Oncol; 2011 Nov; 47(11):1023-31. PubMed ID: 21824804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the oxidative refolding mechanism of Cripto-1 CFC domain.
    Iaccarino E; Sandomenico A; Corvino G; Focà G; Severino V; Russo R; Caporale A; Raimondo D; D'Abramo M; Alba J; Chambery A; Ruvo M
    Int J Biol Macromol; 2019 Sep; 137():1179-1189. PubMed ID: 31295488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Function and Prognostic Significance of Cripto-1 in Colorectal Cancer.
    Sato J; Karasawa H; Suzuki T; Nakayama S; Katagiri M; Maeda S; Ohnuma S; Motoi F; Naitoh T; Unno M
    Cancer Invest; 2020 Apr; 38(4):214-227. PubMed ID: 32157913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRIPTO promotes an aggressive tumour phenotype and resistance to treatment in hepatocellular carcinoma.
    Karkampouna S; van der Helm D; Gray PC; Chen L; Klima I; Grosjean J; Burgmans MC; Farina-Sarasqueta A; Snaar-Jagalska EB; Stroka DM; Terracciano L; van Hoek B; Schaapherder AF; Osanto S; Thalmann GN; Verspaget HW; Coenraad MJ; Kruithof-de Julio M
    J Pathol; 2018 Jul; 245(3):297-310. PubMed ID: 29604056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRIPTO and its signaling partner GRP78 drive the metastatic phenotype in human osteotropic prostate cancer.
    Zoni E; Chen L; Karkampouna S; Granchi Z; Verhoef EI; La Manna F; Kelber J; Pelger RCM; Henry MD; Snaar-Jagalska E; van Leenders GJLH; Beimers L; Kloen P; Gray PC; van der Pluijm G; Kruithof-de Julio M
    Oncogene; 2017 Aug; 36(33):4739-4749. PubMed ID: 28394345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRIPTO overexpression promotes mesenchymal differentiation in prostate carcinoma cells through parallel regulation of AKT and FGFR activities.
    Terry S; El-Sayed IY; Destouches D; Maillé P; Nicolaiew N; Ploussard G; Semprez F; Pimpie C; Beltran H; Londono-Vallejo A; Allory Y; de la Taille A; Salomon DS; Vacherot F
    Oncotarget; 2015 May; 6(14):11994-2008. PubMed ID: 25596738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.