These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38150936)

  • 21. A parallel stranded G-quadruplex composed of threose nucleic acid (TNA).
    Liao JY; Anosova I; Bala S; Van Horn WD; Chaput JC
    Biopolymers; 2017 Mar; 107(3):. PubMed ID: 27718227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High fidelity TNA synthesis by Therminator polymerase.
    Ichida JK; Horhota A; Zou K; McLaughlin LW; Szostak JW
    Nucleic Acids Res; 2005; 33(16):5219-25. PubMed ID: 16157867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and polymerase activity of a fluorescent cytidine TNA triphosphate analogue.
    Mei H; Shi C; Jimenez RM; Wang Y; Kardouh M; Chaput JC
    Nucleic Acids Res; 2017 Jun; 45(10):5629-5638. PubMed ID: 28472363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of threose nucleic acid (TNA) triphosphates and oligonucleotides by polymerase-mediated primer extension.
    Zhang S; Yu H; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2013 Mar; Chapter 4():4.54.1-4.54.17. PubMed ID: 23512696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA-Catalyzed Polymerization of Deoxyribose, Threose, and Arabinose Nucleic Acids.
    Horning DP; Bala S; Chaput JC; Joyce GF
    ACS Synth Biol; 2019 May; 8(5):955-961. PubMed ID: 31042360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor.
    Yu H; Zhang S; Chaput JC
    Nat Chem; 2012 Jan; 4(3):183-7. PubMed ID: 22354431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating TNA stability under simulated physiological conditions.
    Culbertson MC; Temburnikar KW; Sau SP; Liao JY; Bala S; Chaput JC
    Bioorg Med Chem Lett; 2016 May; 26(10):2418-2421. PubMed ID: 27080186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical etiology of nucleic acid structure: the alpha-threofuranosyl-(3'-->2') oligonucleotide system.
    Schöning K; Scholz P; Guntha S; Wu X; Krishnamurthy R; Eschenmoser A
    Science; 2000 Nov; 290(5495):1347-51. PubMed ID: 11082060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of a Fluorescent Cytidine TNA Triphosphate Analogue.
    Mei H; Chaput J
    Methods Mol Biol; 2019; 1973():27-37. PubMed ID: 31016694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An in vitro selection system for TNA.
    Ichida JK; Zou K; Horhota A; Yu B; McLaughlin LW; Szostak JW
    J Am Chem Soc; 2005 Mar; 127(9):2802-3. PubMed ID: 15740086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultra-stable threose nucleic acid-based biosensors for rapid and sensitive nucleic acid detection and in vivo imaging.
    Li P; Zhu C; Liu LS; Han CTJ; Chu HC; Li Z; Mao Z; Wang F; Lo PK
    Acta Biomater; 2024 Mar; 177():472-485. PubMed ID: 38296012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and polymerase recognition of a pyrrolocytidine TNA triphosphate.
    Mei H; Wang Y; Yik EJ; Chaput JC
    Biopolymers; 2021 Jan; 112(1):e23388. PubMed ID: 32615644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient and faithful in vitro replication system for threose nucleic acid.
    Yu H; Zhang S; Dunn MR; Chaput JC
    J Am Chem Soc; 2013 Mar; 135(9):3583-91. PubMed ID: 23432469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and enzymatic incorporation of α-L-threofuranosyl adenine triphosphate (tATP).
    Zhang S; Chaput JC
    Bioorg Med Chem Lett; 2013 Mar; 23(5):1447-9. PubMed ID: 23352269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonenzymatic oligomerization of RNA by TNA templates.
    Heuberger BD; Switzer C
    Org Lett; 2006 Dec; 8(25):5809-11. PubMed ID: 17134278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of Functionally Enhanced α-l-Threofuranosyl Nucleic Acid Aptamers.
    McCloskey CM; Li Q; Yik EJ; Chim N; Ngor AK; Medina E; Grubisic I; Co Ting Keh L; Poplin R; Chaput JC
    ACS Synth Biol; 2021 Nov; 10(11):3190-3199. PubMed ID: 34739228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermoreversible Control of Nucleic Acid Structure and Function with Glyoxal Caging.
    Knutson SD; Sanford AA; Swenson CS; Korn MM; Manuel BA; Heemstra JM
    J Am Chem Soc; 2020 Oct; 142(41):17766-17781. PubMed ID: 33017148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An RNA-cleaving threose nucleic acid enzyme capable of single point mutation discrimination.
    Wang Y; Wang Y; Song D; Sun X; Li Z; Chen JY; Yu H
    Nat Chem; 2022 Mar; 14(3):350-359. PubMed ID: 34916596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient construction of a stable linear gene based on a TNA loop modified primer pair for gene delivery.
    Lu X; Wu X; Wu T; Han L; Liu J; Ding B
    Chem Commun (Camb); 2020 Aug; 56(68):9894-9897. PubMed ID: 32720666
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro selection of an XNA aptamer capable of small-molecule recognition.
    Rangel AE; Chen Z; Ayele TM; Heemstra JM
    Nucleic Acids Res; 2018 Sep; 46(16):8057-8068. PubMed ID: 30085205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.