These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38151091)
41. Extreme Precipitation and Emergency Room Visits for Gastrointestinal Illness in Areas with and without Combined Sewer Systems: An Analysis of Massachusetts Data, 2003-2007. Jagai JS; Li Q; Wang S; Messier KP; Wade TJ; Hilborn ED Environ Health Perspect; 2015 Sep; 123(9):873-9. PubMed ID: 25855939 [TBL] [Abstract][Full Text] [Related]
42. Priority pollutants in urban stormwater: part 2 - case of combined sewers. Gasperi J; Zgheib S; Cladière M; Rocher V; Moilleron R; Chebbo G Water Res; 2012 Dec; 46(20):6693-703. PubMed ID: 22000716 [TBL] [Abstract][Full Text] [Related]
43. London Tideway Tunnels: tackling London's Victorian legacy of combined sewer overflows. Thomas GB; Crawford D Water Sci Technol; 2011; 63(1):80-7. PubMed ID: 21245557 [TBL] [Abstract][Full Text] [Related]
44. Assessing the efficiency of different CSO positions based on network graph characteristics. Sitzenfrei R; Urich C; Möderl M; Rauch W Water Sci Technol; 2013; 67(7):1574-80. PubMed ID: 23552247 [TBL] [Abstract][Full Text] [Related]
45. Assessment of the ecotoxicological risk of combined sewer overflows for an aquatic system using a coupled "substance and bioassay" approach. Gooré Bi E; Monette F; Gasperi J; Perrodin Y Environ Sci Pollut Res Int; 2015 Mar; 22(6):4460-74. PubMed ID: 25315929 [TBL] [Abstract][Full Text] [Related]
46. Dynamic modelling of pollutants from CSOs. Schlütter F; Mark O Water Sci Technol; 2003; 47(4):149-56. PubMed ID: 12666812 [TBL] [Abstract][Full Text] [Related]
47. Comparison of different model approaches for a hygiene early warning system at the lower Ruhr River, Germany. Mälzer HJ; Aus der Beek T; Müller S; Gebhardt J Int J Hyg Environ Health; 2016 Oct; 219(7 Pt B):671-680. PubMed ID: 26163780 [TBL] [Abstract][Full Text] [Related]
48. Occurrence of contaminants of emerging concern in the Eerste River, South Africa: Towards the optimisation of an urban water profiling approach for public- and ecological health risk characterisation. Archer E; Holton E; Fidal J; Kasprzyk-Hordern B; Carstens A; Brocker L; Kjeldsen TR; Wolfaardt GM Sci Total Environ; 2023 Feb; 859(Pt 1):160254. PubMed ID: 36402343 [TBL] [Abstract][Full Text] [Related]
49. Is flow control in a space-constrained drainage network effective? A performance assessment for combined sewer overflow reduction. Wang W; Leitão JP; Wani O Environ Res; 2021 Nov; 202():111688. PubMed ID: 34293307 [TBL] [Abstract][Full Text] [Related]
50. Quantitative catchment profiling to apportion faecal indicator organism budgets for the Ribble system, the UK's sentinel drainage basin for Water Framework Directive research. Stapleton CM; Wyer MD; Crowther J; McDonald AT; Kay D; Greaves J; Wither A; Watkins J; Francis C; Humphrey N; Bradford M J Environ Manage; 2008 Jun; 87(4):535-50. PubMed ID: 18082929 [TBL] [Abstract][Full Text] [Related]
51. Continuous monitoring in sewer networks an approach for quantification of pollution loads from CSOs into surface water bodies. Gruber G; Winkler S; Pressl A Water Sci Technol; 2005; 52(12):215-23. PubMed ID: 16477989 [TBL] [Abstract][Full Text] [Related]
52. Effects of rainfall events on the occurrence and detection efficiency of viruses in river water impacted by combined sewer overflows. Hata A; Katayama H; Kojima K; Sano S; Kasuga I; Kitajima M; Furumai H Sci Total Environ; 2014 Jan; 468-469():757-63. PubMed ID: 24064345 [TBL] [Abstract][Full Text] [Related]
53. Regression modeling of combined sewer overflows to assess system performance. A Bizer M; Kirchhoff CJ Water Sci Technol; 2022 Dec; 86(11):2848-2860. PubMed ID: 36515193 [TBL] [Abstract][Full Text] [Related]
54. New insights into restoring microbial communities by side-stream supersaturated oxygenation to improve the resilience of rivers affected by combined sewer overflows. Zhu Q; Li X; Li G; Tang W; Li C; Li J; Zhao C; Du C; Liang X; Li W; Zhang L Sci Total Environ; 2021 Aug; 782():146903. PubMed ID: 33848851 [TBL] [Abstract][Full Text] [Related]
55. Determination of micropollutants in combined sewer overflows and their removal in a wastewater treatment plant (Seoul, South Korea). Ryu J; Oh J; Snyder SA; Yoon Y Environ Monit Assess; 2014 May; 186(5):3239-51. PubMed ID: 24415065 [TBL] [Abstract][Full Text] [Related]
56. Use of online water quality monitoring for assessing the effects of WWTP overflows in rivers. Boënne W; Desmet N; Van Looy S; Seuntjens P Environ Sci Process Impacts; 2014 May; 16(6):1510-8. PubMed ID: 24770377 [TBL] [Abstract][Full Text] [Related]
57. Temporal analysis of E. coli, TSS and wastewater micropollutant loads from combined sewer overflows: implications for management. Anne-Sophie MH; Dorner SM; Sauvé S; Aboulfadl K; Galarneau M; Servais P; Prévost M Environ Sci Process Impacts; 2015 May; 17(5):965-74. PubMed ID: 25816314 [TBL] [Abstract][Full Text] [Related]
58. A critical review of wastewater quality variation and in-sewer processes during conveyance in sewer systems. Gao Y; Shi X; Jin X; Wang XC; Jin P Water Res; 2023 Jan; 228(Pt B):119398. PubMed ID: 36436409 [TBL] [Abstract][Full Text] [Related]
59. Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO(2) emissions. Mouri G; Oki T Water Sci Technol; 2010; 62(10):2346-56. PubMed ID: 21076221 [TBL] [Abstract][Full Text] [Related]
60. Modelling the interplay of future changes and wastewater management measures on the microbiological river water quality considering safe drinking water production. Demeter K; Derx J; Komma J; Parajka J; Schijven J; Sommer R; Cervero-Aragó S; Lindner G; Zoufal-Hruza CM; Linke R; Savio D; Ixenmaier SK; Kirschner AKT; Kromp H; Blaschke AP; Farnleitner AH Sci Total Environ; 2021 May; 768():144278. PubMed ID: 33736313 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]