These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38151338)

  • 1. Modulate the Strong Exciton Effect by Na
    Xing F; Liu S; Li J; Wang C; Jin S; Jin H; Li J
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):860-868. PubMed ID: 38151338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen-Vacancy-Mediated Exciton Dissociation in BiOBr for Boosting Charge-Carrier-Involved Molecular Oxygen Activation.
    Wang H; Yong D; Chen S; Jiang S; Zhang X; Shao W; Zhang Q; Yan W; Pan B; Xie Y
    J Am Chem Soc; 2018 Feb; 140(5):1760-1766. PubMed ID: 29319310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the excitonic processes in polymeric photocatalysts.
    Wang H; Jiang S; Chen S; Zhang X; Shao W; Sun X; Zhao Z; Zhang Q; Luo Y; Xie Y
    Chem Sci; 2017 May; 8(5):4087-4092. PubMed ID: 28580122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon vacancy-mediated exciton dissociation in Ti
    Song Q; Hu J; Zhou Y; Ye Q; Shi X; Li D; Jiang D
    J Colloid Interface Sci; 2022 Oct; 623():487-499. PubMed ID: 35597018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Exciton Dissociation through the Edge Interfacial State in Metal Halide Perovskite-Based Photocatalysts.
    Xue J; Jiang S; Wang Z; Jiang Z; Cao H; Zhu X; Zhang Q; Luo Y; Bao J
    J Phys Chem Lett; 2023 Feb; 14(6):1504-1511. PubMed ID: 36745060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of dual transfer channels in graphitic carbon nitride photocatalyst for high-efficiency environmental pollution remediation: Enhanced exciton dissociation and carrier migration.
    Li D; Liu Y; Wen C; Huang J; Li R; Liu H; Zhong J; Chen P; Lv W; Liu G
    J Hazard Mater; 2022 Aug; 436():129171. PubMed ID: 35605504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating Local Charge Distribution of Carbon Nitride for Promoting Exciton Dissociation and Charge-Induced Reactions.
    Chen G; Zhang ZD; Liao YX; Zhang Z; You YZ
    Small; 2021 Aug; 17(32):e2100698. PubMed ID: 34197025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding Charge Transport in Carbon Nitride for Enhanced Photocatalytic Solar Fuel Production.
    Rahman MZ; Mullins CB
    Acc Chem Res; 2019 Jan; 52(1):248-257. PubMed ID: 30596234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast Hot Electron Transfer and Trap-State Mediated Charge Carrier Separation toward Enhanced Photocatalytic Activity in g-C
    Bhatt H; Goswami T; Yadav DK; Ghorai N; Shukla A; Kaur G; Kaur A; Ghosh HN
    J Phys Chem Lett; 2021 Dec; 12(49):11865-11872. PubMed ID: 34874742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting Hot-Electron Generation: Exciton Dissociation at the Order-Disorder Interfaces in Polymeric Photocatalysts.
    Wang H; Sun X; Li D; Zhang X; Chen S; Shao W; Tian Y; Xie Y
    J Am Chem Soc; 2017 Feb; 139(6):2468-2473. PubMed ID: 28102077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Excitonic Perspective on Low-Dimensional Semiconductors for Photocatalysis.
    Wang H; Liu W; He X; Zhang P; Zhang X; Xie Y
    J Am Chem Soc; 2020 Aug; 142(33):14007-14022. PubMed ID: 32702981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.
    Etzold F; Howard IA; Mauer R; Meister M; Kim TD; Lee KS; Baek NS; Laquai F
    J Am Chem Soc; 2011 Jun; 133(24):9469-79. PubMed ID: 21553906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting exciton dissociation and molecular oxygen activation by in-plane grafting nitrogen-doped carbon nanosheets to graphitic carbon nitride for enhanced photocatalytic performance.
    Dong S; Liu C; Chen Y
    J Colloid Interface Sci; 2019 Oct; 553():59-70. PubMed ID: 31185384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced visible-light photocatalytic H
    Xu Q; Jiang C; Cheng B; Yu J
    Dalton Trans; 2017 Aug; 46(32):10611-10619. PubMed ID: 28379255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band-structure tunability
    Ghosh S; Sarkar D; Bastia S; Chaudhary YS
    Nanoscale; 2023 Jul; 15(26):10939-10974. PubMed ID: 37337832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacing g-C
    Goswami T; Bhatt H; Yadav DK; Ghosh HN
    J Phys Chem B; 2022 Jan; 126(2):572-580. PubMed ID: 34994569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ formatting donor-acceptor polymer with giant dipole moment and ultrafast exciton separation.
    Cheng C; Yu J; Xu D; Wang L; Liang G; Zhang L; Jaroniec M
    Nat Commun; 2024 Feb; 15(1):1313. PubMed ID: 38350993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interior Exciton Extraction by Spatial-Controlled Iodine Doping in BiOBr Photocatalysts.
    He X; Zhong X; Si W; Zhao Z; Wang H; Zhang X; Xie Y
    Nano Lett; 2024 Jun; 24(22):6545-6552. PubMed ID: 38781416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.