BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38151558)

  • 1. Environmental risk of ion-absorbed rare earth ores: concentration of leaching agent and fractionation of Pb.
    Jia YG; Yan Z; Shang L; Chen J
    Environ Sci Pollut Res Int; 2024 Jan; 31(4):6425-6436. PubMed ID: 38151558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on Pb release by several new lixiviants in weathered crust elution-deposited rare earth ore leaching process: Behavior and mechanism.
    Qiao J; Tang J; Xue Q
    Ecotoxicol Environ Saf; 2020 Mar; 190():110138. PubMed ID: 31901809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leach of the weathering crust elution-deposited rare earth ore for low environmental pollution with a combination of (NH
    Tang J; Qiao J; Xue Q; Liu F; Chen H; Zhang G
    Chemosphere; 2018 May; 199():160-167. PubMed ID: 29438942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior and mechanism of different fraction lead leach with several typical sulfate lixiviants in the weathered crust elution-deposited rare earth ore.
    Tang J; Qiao J; Xue Q; Liu F; Fan X; Liu S; Huang Y
    Environ Sci Pollut Res Int; 2021 Jun; 28(24):31885-31894. PubMed ID: 33619617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ammonia nitrogen sources and pollution along soil profiles in an in-situ leaching rare earth ore.
    Zhang Q; Ren F; Li F; Chen G; Yang G; Wang J; Du K; Liu S; Li Z
    Environ Pollut; 2020 Dec; 267():115449. PubMed ID: 33254692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment.
    Tang J; Xue Q; Chen H; Li W
    Environ Sci Pollut Res Int; 2017 May; 24(14):12918-12926. PubMed ID: 28365846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertical distribution and occurrence state of the residual leaching agent (ammonium sulfate) in the weathered crust elution-deposited rare earth ore.
    Huang S; Li Z; Yu J; Feng J; Hou H; Chi R
    J Environ Manage; 2021 Dec; 299():113642. PubMed ID: 34467858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. XRD and TEM analyses of a simulated leached rare earth ore deposit: Implications for clay mineral contents and structural evolution.
    Jin X; Chen L; Chen H; Zhang L; Wang W; Ji H; Deng S; Jiang L
    Ecotoxicol Environ Saf; 2021 Dec; 225():112728. PubMed ID: 34500383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area.
    Liu WS; Guo MN; Liu C; Yuan M; Chen XT; Huot H; Zhao CM; Tang YT; Morel JL; Qiu RL
    Chemosphere; 2019 Feb; 216():75-83. PubMed ID: 30359919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound-assisted leaching of rare earths from the weathered crust elution-deposited ore using magnesium sulfate without ammonia-nitrogen pollution.
    Yin S; Pei J; Jiang F; Li S; Peng J; Zhang L; Ju S; Srinivasakannan C
    Ultrason Sonochem; 2018 Mar; 41():156-162. PubMed ID: 29137738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit.
    Markiewicz-Patkowska J; Hursthouse A; Przybyla-Kij H
    Environ Int; 2005 May; 31(4):513-21. PubMed ID: 15788192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pb speciation in rare earth minerals and use of entropy and fuzzy clustering methods to assess the migration capacity of Pb during mining activities.
    Liu JH; Chen LK; Liu CY; Qiu LR; He S
    Ecotoxicol Environ Saf; 2018 Dec; 165():334-342. PubMed ID: 30212734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water.
    Chen A; Lin C; Lu W; Ma Y; Bai Y; Chen H; Li J
    J Hazard Mater; 2010 Mar; 175(1-3):638-45. PubMed ID: 19913356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal stabilization in contaminated road-derived sediments.
    Rijkenberg MJ; Depree CV
    Sci Total Environ; 2010 Feb; 408(5):1212-20. PubMed ID: 20006898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of Controlling Heavy Metals in Soil of Rare Earth Mining Area by Biochar Supported Graphene Oxide].
    Yang S; Liu ZW; Long B; Bi YS; Lin Y; Zuo HW
    Huan Jing Ke Xue; 2022 Mar; 43(3):1567-1576. PubMed ID: 35258221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous leaching of multiple heavy metals from a soil column by extracellular polymeric substances of Aspergillus tubingensis F12.
    Tang A; Lu Y; Li Q; Zhang X; Cheng N; Liu H; Liu Y
    Chemosphere; 2021 Jan; 263():127883. PubMed ID: 32829220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential for leaching of heavy metals in open-burning bottom ash and soil from a non-engineered solid waste landfill.
    Gwenzi W; Gora D; Chaukura N; Tauro T
    Chemosphere; 2016 Mar; 147():144-54. PubMed ID: 26766350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chelant extraction of heavy metals from contaminated soils.
    Peters RW
    J Hazard Mater; 1999 Apr; 66(1-2):151-210. PubMed ID: 10379036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization mechanism of Pb with an amino- and mercapto-polymer to assist phytoremediation.
    Li F; Yang B; Yang F; Wu J; Chen J; Song S; Jia J
    J Hazard Mater; 2023 Jan; 442():130139. PubMed ID: 36303361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source.
    Chrastný V; Vaněk A; Teper L; Cabala J; Procházka J; Pechar L; Drahota P; Penížek V; Komárek M; Novák M
    Environ Monit Assess; 2012 Apr; 184(4):2517-36. PubMed ID: 21674226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.