BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38151694)

  • 1. Adjustable luminescence copper nanoclusters nanoswitch based on competitive coordination of samarium ions for cascade detection of adenosine triphosphate and acid phosphatase activity.
    Huang X; Chen H; Huang R; Shi Y; Ye R; Qiu B
    Mikrochim Acta; 2023 Dec; 191(1):54. PubMed ID: 38151694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminescent Aggregated Copper Nanoclusters Nanoswitch Controlled by Hydrophobic Interaction for Real-Time Monitoring of Acid Phosphatase Activity.
    Huang Y; Feng H; Liu W; Zhou Y; Tang C; Ao H; Zhao M; Chen G; Chen J; Qian Z
    Anal Chem; 2016 Dec; 88(23):11575-11583. PubMed ID: 27796092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polydopamine coated copper nanoclusters with aggregation-induced emission for fluorometric determination of phosphate ion and acid phosphatase activity.
    Du Q; Zhang X; Cao H; Huang Y
    Mikrochim Acta; 2020 May; 187(6):357. PubMed ID: 32468344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A turn-on fluorescence strategy for cellular glutathione determination based on the aggregation-induced emission enhancement of self-assembled copper nanoclusters.
    Wang HB; Mao AL; Gan T; Liu YM
    Analyst; 2020 Oct; 145(21):7009-7017. PubMed ID: 32870185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione-stabilized copper nanoclusters mediated-inner filter effect for sensitive and selective determination of p-nitrophenol and alkaline phosphatase activity.
    Wang HB; Tao BB; Wu NN; Zhang HD; Liu YM
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120948. PubMed ID: 35104744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aluminum(III) triggered aggregation-induced emission of glutathione-capped copper nanoclusters as a fluorescent probe for creatinine.
    Jalili R; Khataee A
    Mikrochim Acta; 2018 Dec; 186(1):29. PubMed ID: 30565190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent and visual assay of H
    Mei H; Ma Y; Wu H; Wang X
    Anal Bioanal Chem; 2021 Mar; 413(8):2135-2146. PubMed ID: 33511458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ce
    Shen J; Fan Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123070. PubMed ID: 37390716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerium(iii)-directed assembly of glutathione-capped gold nanoclusters for sensing and imaging of alkaline phosphatase-mediated hydrolysis of adenosine triphosphate.
    You JG; Lu CY; Krishna Kumar AS; Tseng WL
    Nanoscale; 2018 Sep; 10(37):17691-17698. PubMed ID: 30206623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-stimuli responsive copper nanoclusters with bright red luminescence for quantifying acid phosphatase activity via redox-controlled luminescence switch.
    Zhao M; Feng H; Han J; Ao H; Qian Z
    Anal Chim Acta; 2017 Sep; 984():202-210. PubMed ID: 28843565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine.
    Zhang M; Qiao J; Zhang S; Qi L
    Talanta; 2018 May; 182():595-599. PubMed ID: 29501198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation-induced emission of copper nanoclusters triggered by synergistic effect of dual metal ions and the application in the detection of H
    Qu F; Yang Q; Wang B; You J
    Talanta; 2020 Jan; 207():120289. PubMed ID: 31594584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coal humus acid functionalized high stability fluorescent copper nanoclusters for tumor identification by sequential off-on-off monitoring tryptophan and Hg
    Li L; Chen L; Song Z; Wu W; Zhao W; Wei Y; Wang B; Zhang C
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jun; 294():122557. PubMed ID: 36893677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper nanoclusters@Al
    Qu F; Wang B; Li K; You J; Han W
    Mikrochim Acta; 2020 Jul; 187(8):457. PubMed ID: 32683631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Synthesis of Thiolated Gold Nanoclusters Induced by Lanthanides for Ultrasensitive and Luminescent Detection of the Potential Anthrax Spores' Biomarker.
    Halawa MI; Li BS; Xu G
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32888-32897. PubMed ID: 32575980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluorescence signal amplification strategy for modification-free ratiometric determination of tyrosinase in situ based on the use of dual-templated copper nanoclusters.
    Huang X; Zhao H; Qiu W; Wang J; Guo L; Lin Z; Pan W; Wu Y; Qiu B
    Mikrochim Acta; 2020 Mar; 187(4):240. PubMed ID: 32198661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A label-free fluorescent probe for the detection of adenosine 5'‑triphosphate via inhibiting the aggregation-induced emission enhancement of glutathione modified silver nanoclusters triggered by zinc ion.
    Liu X; Yu Y; Lin B; Cao Y; Guo M
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 214():360-365. PubMed ID: 30802791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile sonochemical synthesis of pH-responsive copper nanoclusters for selective and sensitive detection of Pb(2+) in living cells.
    Wang C; Cheng H; Huang Y; Xu Z; Lin H; Zhang C
    Analyst; 2015 Aug; 140(16):5634-9. PubMed ID: 26133700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-templated copper nanoclusters as a fluorescent probe for fluoride by using aluminum ions as a bridge.
    Pang J; Lu Y; Gao X; He L; Sun J; Yang F; Hao Z; Liu Y
    Mikrochim Acta; 2019 May; 186(6):364. PubMed ID: 31104105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly fluorescent copper nanoclusters for sensing and bioimaging.
    An Y; Ren Y; Bick M; Dudek A; Hong-Wang Waworuntu E; Tang J; Chen J; Chang B
    Biosens Bioelectron; 2020 Apr; 154():112078. PubMed ID: 32056972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.