These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 38152989)

  • 1. Metabolic Communication by SGLT2 Inhibition.
    Billing AM; Kim YC; Gullaksen S; Schrage B; Raabe J; Hutzfeldt A; Demir F; Kovalenko E; Lassé M; Dugourd A; Fallegger R; Klampe B; Jaegers J; Li Q; Kravtsova O; Crespo-Masip M; Palermo A; Fenton RA; Hoxha E; Blankenberg S; Kirchhof P; Huber TB; Laugesen E; Zeller T; Chrysopoulou M; Saez-Rodriguez J; Magnussen C; Eschenhagen T; Staruschenko A; Siuzdak G; Poulsen PL; Schwab C; Cuello F; Vallon V; Rinschen MM
    Circulation; 2024 Mar; 149(11):860-884. PubMed ID: 38152989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the metabolic reprogramming induced by sodium-glucose cotransporter 2 inhibition.
    Kogot-Levin A; Riahi Y; Abramovich I; Mosenzon O; Agranovich B; Kadosh L; Ben-Haroush Schyr R; Kleiman D; Hinden L; Cerasi E; Ben-Zvi D; Bernal-Mizrachi E; Tam J; Gottlieb E; Leibowitz G
    JCI Insight; 2023 Apr; 8(7):. PubMed ID: 36809274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-Based Evaluation of Proximal Sodium Reabsorption Through SGLT2 in Health and Diabetes and the Effect of Inhibition With Canagliflozin.
    Brady JA; Hallow KM
    J Clin Pharmacol; 2018 Mar; 58(3):377-385. PubMed ID: 29144539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1.
    Novikov A; Fu Y; Huang W; Freeman B; Patel R; van Ginkel C; Koepsell H; Busslinger M; Onishi A; Nespoux J; Vallon V
    Am J Physiol Renal Physiol; 2019 Jan; 316(1):F173-F185. PubMed ID: 30427222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How can inhibition of glucose and sodium transport in the early proximal tubule protect the cardiorenal system?
    Vallon V
    Nephrol Dial Transplant; 2024 Mar; ():. PubMed ID: 38439675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated circulating level of β-aminoisobutyric acid (BAIBA) in heart failure patients with type 2 diabetes receiving sodium-glucose cotransporter 2 inhibitors.
    Katano S; Yano T; Kouzu H; Nagaoka R; Numazawa R; Yamano K; Fujisawa Y; Ohori K; Nagano N; Fujito T; Nishikawa R; Ohwada W; Katayose M; Sato T; Kuno A; Furuhashi M
    Cardiovasc Diabetol; 2022 Dec; 21(1):285. PubMed ID: 36539818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diabetes and Cardiorenal Complications: A Clinical Review of Existing Therapies and Novel Combinations, Focusing on SGLT2 Inhibitors.
    Kale A; Sharma A; Anders HJ; Gaikwad AB
    Curr Diabetes Rev; 2023; 19(8):e160822207546. PubMed ID: 35975848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melatonin ameliorates SGLT2 inhibitor-induced diabetic ketoacidosis by inhibiting lipolysis and hepatic ketogenesis in type 2 diabetic mice.
    Park JH; Seo I; Shim HM; Cho H
    J Pineal Res; 2020 Mar; 68(2):e12623. PubMed ID: 31743484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognitive impairment and type 2 diabetes mellitus: Focus of SGLT2 inhibitors treatment.
    Rizzo MR; Di Meo I; Polito R; Auriemma MC; Gambardella A; di Mauro G; Capuano A; Paolisso G
    Pharmacol Res; 2022 Feb; 176():106062. PubMed ID: 35017046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of Protective Effects of SGLT2 Inhibitors in Cardiovascular Disease and Renal Dysfunction.
    Liu B; Wang Y; Zhang Y; Yan B
    Curr Top Med Chem; 2019; 19(20):1818-1849. PubMed ID: 31456521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardioprotection conferred by sodium-glucose cotransporter 2 inhibitors: a renal proximal tubule perspective.
    Silva Dos Santos D; Polidoro JZ; Borges-Júnior FA; Girardi ACC
    Am J Physiol Cell Physiol; 2020 Feb; 318(2):C328-C336. PubMed ID: 31721613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Canagliflozin regulates metabolic reprogramming in diabetic kidney disease by inducing fasting-like and aestivation-like metabolic patterns.
    Shao M; Chen D; Wang Q; Guo F; Wei F; Zhang W; Gan T; Luo Y; Fan X; Du P; Liu Y; Ma X; Ren G; Song Y; Zhao Y; Qin G
    Diabetologia; 2024 Apr; 67(4):738-754. PubMed ID: 38236410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The combination of exercise training and sodium-glucose cotransporter-2 inhibition improves glucose tolerance and exercise capacity in a rodent model of type 2 diabetes.
    Linden MA; Ross TT; Beebe DA; Gorgoglione MF; Hamilton KL; Miller BF; Braun B; Esler WP
    Metabolism; 2019 Aug; 97():68-80. PubMed ID: 31132381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of renal and cardiovascular protection mechanisms of SGLT2 inhibitors: model-based analysis of clinical data.
    Hallow KM; Greasley PJ; Helmlinger G; Chu L; Heerspink HJ; Boulton DW
    Am J Physiol Renal Physiol; 2018 Nov; 315(5):F1295-F1306. PubMed ID: 30019930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice.
    Lee DM; Battson ML; Jarrell DK; Hou S; Ecton KE; Weir TL; Gentile CL
    Cardiovasc Diabetol; 2018 Apr; 17(1):62. PubMed ID: 29703207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-glucose co-transporter2 expression and inflammatory activity in diabetic atherosclerotic plaques: Effects of sodium-glucose co-transporter2 inhibitor treatment.
    D'Onofrio N; Sardu C; Trotta MC; Scisciola L; Turriziani F; Ferraraccio F; Panarese I; Petrella L; Fanelli M; Modugno P; Massetti M; Marfella LV; Sasso FC; Rizzo MR; Barbieri M; Furbatto F; Minicucci F; Mauro C; Federici M; Balestrieri ML; Paolisso G; Marfella R
    Mol Metab; 2021 Dec; 54():101337. PubMed ID: 34500107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SGLT2 is not expressed in pancreatic α- and β-cells, and its inhibition does not directly affect glucagon and insulin secretion in rodents and humans.
    Chae H; Augustin R; Gatineau E; Mayoux E; Bensellam M; Antoine N; Khattab F; Lai BK; Brusa D; Stierstorfer B; Klein H; Singh B; Ruiz L; Pieper M; Mark M; Herrera PL; Gribble FM; Reimann F; Wojtusciszyn A; Broca C; Rita N; Piemonti L; Gilon P
    Mol Metab; 2020 Dec; 42():101071. PubMed ID: 32896668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excretion of glucose analogue with SGLT2 affinity predicts response effectiveness to sodium glucose transporter 2 inhibitors in patients with type 2 diabetes mellitus.
    Geist BK; Brath H; Zisser L; Yu J; Fueger B; Nics L; Patronas EM; Kautzky-Willer A; Hacker M; Rasul S
    Eur J Nucl Med Mol Imaging; 2023 Aug; 50(10):3034-3041. PubMed ID: 37195445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics.
    Liu Z; Ma X; Ilyas I; Zheng X; Luo S; Little PJ; Kamato D; Sahebkar A; Wu W; Weng J; Xu S
    Theranostics; 2021; 11(9):4502-4515. PubMed ID: 33754074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-of-the-art-review Mechanisms of action of SGLT2 inhibitors and clinical implications.
    Vallon V
    Am J Hypertens; 2024 Jul; ():. PubMed ID: 39017631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.