These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38152998)
1. A Meta-analysis Reveals Global Change Stressors Potentially Aggravate Mercury Toxicity in Marine Biota. Wei H; Xie D; Wang DZ; Wang M Environ Sci Technol; 2024 Jan; 58(1):219-230. PubMed ID: 38152998 [TBL] [Abstract][Full Text] [Related]
2. Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish (Argyrosomus regius). Sampaio E; Lopes AR; Francisco S; Paula JR; Pimentel M; Maulvault AL; Repolho T; Grilo TF; Pousão-Ferreira P; Marques A; Rosa R Sci Total Environ; 2018 Mar; 618():388-398. PubMed ID: 29132006 [TBL] [Abstract][Full Text] [Related]
3. Mercury isotope variations within the marine food web of Chinese Bohai Sea: Implications for mercury sources and biogeochemical cycling. Meng M; Sun RY; Liu HW; Yu B; Yin YG; Hu LG; Chen JB; Shi JB; Jiang GB J Hazard Mater; 2020 Feb; 384():121379. PubMed ID: 31611019 [TBL] [Abstract][Full Text] [Related]
4. Oligotrophy as a major driver of mercury bioaccumulation in medium-to high-trophic level consumers: A marine ecosystem-comparative study. Chouvelon T; Cresson P; Bouchoucha M; Brach-Papa C; Bustamante P; Crochet S; Marco-Miralles F; Thomas B; Knoery J Environ Pollut; 2018 Feb; 233():844-854. PubMed ID: 29149758 [TBL] [Abstract][Full Text] [Related]
5. Mercury biomagnification in benthic, pelagic, and benthopelagic food webs in an Arctic marine ecosystem. Hilgendag IR; Swanson HK; Lewis CW; Ehrman AD; Power M Sci Total Environ; 2022 Oct; 841():156424. PubMed ID: 35662606 [TBL] [Abstract][Full Text] [Related]
6. Mercury isotopic evidence for the importance of particles as a source of mercury to marine organisms. Motta LC; Blum JD; Popp BN; Umhau BP; Benitez-Nelson CR; Close HG; Washburn SJ; Drazen JC Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2208183119. PubMed ID: 36279440 [TBL] [Abstract][Full Text] [Related]
7. Responses of marine trophic levels to the combined effects of ocean acidification and warming. Hu N; Bourdeau PE; Hollander J Nat Commun; 2024 Apr; 15(1):3400. PubMed ID: 38649374 [TBL] [Abstract][Full Text] [Related]
8. Warmer temperature increases mercury toxicity in a marine copepod. Bai Z; Wang M Ecotoxicol Environ Saf; 2020 Sep; 201():110861. PubMed ID: 32544748 [TBL] [Abstract][Full Text] [Related]
9. Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: an overview of spatial and temporal trends. Braune BM; Outridge PM; Fisk AT; Muir DC; Helm PA; Hobbs K; Hoekstra PF; Kuzyk ZA; Kwan M; Letcher RJ; Lockhart WL; Norstrom RJ; Stern GA; Stirling I Sci Total Environ; 2005 Dec; 351-352():4-56. PubMed ID: 16109439 [TBL] [Abstract][Full Text] [Related]
10. Climate change impacts on pollutants mobilization and interactive effects of climate change and pollutants on toxicity and bioaccumulation of pollutants in estuarine and marine biota and linkage to seafood security. Kibria G; Nugegoda D; Rose G; Haroon AKY Mar Pollut Bull; 2021 Jun; 167():112364. PubMed ID: 33933897 [TBL] [Abstract][Full Text] [Related]
11. Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories. Byrne M; Przeslawski R Integr Comp Biol; 2013 Oct; 53(4):582-96. PubMed ID: 23697893 [TBL] [Abstract][Full Text] [Related]
12. Climate-driven changes of global marine mercury cycles in 2100. Wang Y; Wu P; Zhang Y Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2202488120. PubMed ID: 36595667 [TBL] [Abstract][Full Text] [Related]
13. Mercury transfer in a subtropical coastal lagoon food web (SE Gulf of California) under two contrasting climatic conditions. Jara-Marini ME; Soto-Jiménez MF; Páez-Osuna F Environ Toxicol; 2012 Sep; 27(9):526-36. PubMed ID: 21374782 [TBL] [Abstract][Full Text] [Related]
14. Seasonal variation in mercury and food web biomagnification in Lake Ontario, Canada. Zhang L; Campbell LM; Johnson TB Environ Pollut; 2012 Feb; 161():178-84. PubMed ID: 22230083 [TBL] [Abstract][Full Text] [Related]
15. Different circulation history of mercury in aquatic biota from King George Island of the Antarctic. Liu H; Yu B; Fu J; Li Y; Yang R; Zhang Q; Liang Y; Yin Y; Hu L; Shi J; Jiang G Environ Pollut; 2019 Jul; 250():892-897. PubMed ID: 31085475 [TBL] [Abstract][Full Text] [Related]
16. Human Health and Ocean Pollution. Landrigan PJ; Stegeman JJ; Fleming LE; Allemand D; Anderson DM; Backer LC; Brucker-Davis F; Chevalier N; Corra L; Czerucka D; Bottein MD; Demeneix B; Depledge M; Deheyn DD; Dorman CJ; Fénichel P; Fisher S; Gaill F; Galgani F; Gaze WH; Giuliano L; Grandjean P; Hahn ME; Hamdoun A; Hess P; Judson B; Laborde A; McGlade J; Mu J; Mustapha A; Neira M; Noble RT; Pedrotti ML; Reddy C; Rocklöv J; Scharler UM; Shanmugam H; Taghian G; van de Water JAJM; Vezzulli L; Weihe P; Zeka A; Raps H; Rampal P Ann Glob Health; 2020 Dec; 86(1):151. PubMed ID: 33354517 [TBL] [Abstract][Full Text] [Related]
17. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. Ullah H; Nagelkerken I; Goldenberg SU; Fordham DA PLoS Biol; 2018 Jan; 16(1):e2003446. PubMed ID: 29315309 [TBL] [Abstract][Full Text] [Related]
18. Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Lavoie RA; Jardine TD; Chumchal MM; Kidd KA; Campbell LM Environ Sci Technol; 2013; 47(23):13385-94. PubMed ID: 24151937 [TBL] [Abstract][Full Text] [Related]
19. Contrasting food web factor and body size relationships with Hg and Se concentrations in marine biota. Karimi R; Frisk M; Fisher NS PLoS One; 2013; 8(9):e74695. PubMed ID: 24019976 [TBL] [Abstract][Full Text] [Related]
20. Using sulfur stable isotopes to assess mercury bioaccumulation and biomagnification in temperate lake food webs. Clayden MG; Lescord GL; Kidd KA; Wang X; Muir DC; O'Driscoll NJ Environ Toxicol Chem; 2017 Mar; 36(3):661-670. PubMed ID: 27648524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]