These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38153271)

  • 1. DF-Phos: Prediction of Protein Phosphorylation Sites by Deep Forest.
    Zahiri Z; Mehrshad N; Mehrshad M
    J Biochem; 2024 Mar; 175(4):447-456. PubMed ID: 38153271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting protein phosphorylation sites in soybean using interpretable deep tabular learning network.
    Khalili E; Ramazi S; Ghanati F; Kouchaki S
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.
    Wang D; Zeng S; Xu C; Qiu W; Liang Y; Joshi T; Xu D
    Bioinformatics; 2017 Dec; 33(24):3909-3916. PubMed ID: 29036382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RF-Phos: A Novel General Phosphorylation Site Prediction Tool Based on Random Forest.
    Ismail HD; Jones A; Kim JH; Newman RH; Kc DB
    Biomed Res Int; 2016; 2016():3281590. PubMed ID: 27066500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and review of techniques and tools based on machine learning and deep learning for prediction of lysine malonylation sites in protein sequences.
    Ramazi S; Tabatabaei SAH; Khalili E; Nia AG; Motarjem K
    Database (Oxford); 2024 Jan; 2024():. PubMed ID: 38245002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepPhos: prediction of protein phosphorylation sites with deep learning.
    Luo F; Wang M; Liu Y; Zhao XM; Li A
    Bioinformatics; 2019 Aug; 35(16):2766-2773. PubMed ID: 30601936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MusiteDeep: a deep-learning based webserver for protein post-translational modification site prediction and visualization.
    Wang D; Liu D; Yuchi J; He F; Jiang Y; Cai S; Li J; Xu D
    Nucleic Acids Res; 2020 Jul; 48(W1):W140-W146. PubMed ID: 32324217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information.
    Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ
    Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Machine Learning and Algorithmic Methods for Protein Phosphorylation Site Prediction.
    Esmaili F; Pourmirzaei M; Ramazi S; Shojaeilangari S; Yavari E
    Genomics Proteomics Bioinformatics; 2023 Dec; 21(6):1266-1285. PubMed ID: 37863385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PhosIDN: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein-protein interaction information.
    Yang H; Wang M; Liu X; Zhao XM; Li A
    Bioinformatics; 2021 Dec; 37(24):4668-4676. PubMed ID: 34320631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepNphos: A deep-learning architecture for prediction of N-phosphorylation sites.
    Chang X; Zhu Y; Chen Y; Li L
    Comput Biol Med; 2024 Mar; 170():108079. PubMed ID: 38295472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning.
    Chen YZ; Wang ZZ; Wang Y; Ying G; Chen Z; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34002774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mal-Prec: computational prediction of protein Malonylation sites via machine learning based feature integration : Malonylation site prediction.
    Liu X; Wang L; Li J; Hu J; Zhang X
    BMC Genomics; 2020 Nov; 21(1):812. PubMed ID: 33225896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of serine phosphorylation prediction in proteins by comparing human engineered features and deep representations.
    Naseer S; Hussain W; Khan YD; Rasool N
    Anal Biochem; 2021 Feb; 615():114069. PubMed ID: 33340540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive tool for accurate identification of methyl-Glutamine sites.
    Malebary SJ; Alzahrani E; Khan YD
    J Mol Graph Model; 2022 Jan; 110():108074. PubMed ID: 34768228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepTL-Ubi: A novel deep transfer learning method for effectively predicting ubiquitination sites of multiple species.
    Liu Y; Li A; Zhao XM; Wang M
    Methods; 2021 Aug; 192():103-111. PubMed ID: 32791338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting phosphorylation site prediction with sequence feature-based machine learning.
    Maiti S; Hassan A; Mitra P
    Proteins; 2020 Feb; 88(2):284-291. PubMed ID: 31412138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ResNetKhib: a novel cell type-specific tool for predicting lysine 2-hydroxyisobutylation sites via transfer learning.
    Jia X; Zhao P; Li F; Qin Z; Ren H; Li J; Miao C; Zhao Q; Akutsu T; Dou G; Chen Z; Song J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36880172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning method to more accurately recall known lysine acetylation sites.
    Wu M; Yang Y; Wang H; Xu Y
    BMC Bioinformatics; 2019 Jan; 20(1):49. PubMed ID: 30674277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.