BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3815338)

  • 1. Sensitivity to melphalan as a function of transport activity and proliferative rate in BALB/c 3T3 fibroblasts.
    Blosmanis R; Wright JA; Goldenberg GJ
    Cancer Res; 1987 Mar; 47(5):1273-7. PubMed ID: 3815338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of the Na(+)/K(+)/Cl(-) cotransporter gene induces cell proliferation and phenotypic transformation in mouse fibroblasts.
    Panet R; Marcus M; Atlan H
    J Cell Physiol; 2000 Jan; 182(1):109-18. PubMed ID: 10567922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell density and amino acid transport in 3T3, SV3T3, and SV3T3 revertant cells.
    Borghetti AF; Piedimonte G; Tramacere M; Severini A; Ghiringhelli P; Guidotti GG
    J Cell Physiol; 1980 Oct; 105(1):39-49. PubMed ID: 7430266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of polyamine depletion on serum stimulation of quiescent 3T3 murine fibroblast cells.
    Schaefer EL; Seidenfeld J
    J Cell Physiol; 1987 Dec; 133(3):546-52. PubMed ID: 3121641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport, metabolism, and DNA interaction of melphalan in lymphocytes from patients with chronic lymphocytic leukemia.
    Panasci L; Henderson D; Torres-Garcia SJ; Skalski V; Caplan S; Hutchinson M
    Cancer Res; 1988 Apr; 48(7):1972-6. PubMed ID: 3349471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for carrier-mediated transport of melphalan by L5178Y lymphoblasts in vitro.
    Goldenberg GJ; Lee M; Lam HY; Begleiter A
    Cancer Res; 1977 Mar; 37(3):755-60. PubMed ID: 837375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkylator resistance in human B lymphoid cell lines: (1). Melphalan accumulation, cytotoxicity, interstrand-DNA-crosslinks, cell cycle analysis, and glutathione content in the melphalan-sensitive B-lymphocytic cell line (WIL2) and in the melphalan-resistant B-CLL cell line (WSU-CLL).
    Pu Q; Bianchi P; Bezwoda WR
    Anticancer Res; 2000; 20(4):2561-8. PubMed ID: 10953327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melphalan transport, glutathione levels, and glutathione-S-transferase activity in human medulloblastoma.
    Friedman HS; Skapek SX; Colvin OM; Elion GB; Blum MR; Savina PM; Hilton J; Schold SC; Kurtzberg J; Bigner DD
    Cancer Res; 1988 Oct; 48(19):5397-402. PubMed ID: 3416297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system.
    Ceriotti L; Kob A; Drechsler S; Ponti J; Thedinga E; Colpo P; Ehret R; Rossi F
    Anal Biochem; 2007 Dec; 371(1):92-104. PubMed ID: 17709091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid-conferred resistance to melphalan. I. Structure-activity relationship in cultured murine L1210 leukemia cells.
    Vistica DT; Toal JN; Rabinovitz M
    Cancer Treat Rep; 1976 Sep; 60(9):1363-7. PubMed ID: 1016969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug and hormone sensitivity of estrogen receptor-positive and -negative human breast cancer cells in vitro.
    Goldenberg GJ; Froese EK
    Cancer Res; 1982 Dec; 42(12):5147-51. PubMed ID: 7139616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of ellipticine and aza-analogue derivatives on cell cycle progression and survival of BALB/c 3T3 cells released from serum starvation or thymidine double block.
    Vilarem MJ; Charcosset JY; Primaux F; Gras MP; Calvo F; Larsen CJ
    Cancer Res; 1985 Aug; 45(8):3906-11. PubMed ID: 4016757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective cytotoxicity of purified homologues of tunicamycin on transformed BALB/3T3 fibroblasts.
    Seiberg M; Duksin D
    Cancer Res; 1983 Feb; 43(2):845-50. PubMed ID: 6293705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium transport and content during G1 and S phase following serum stimulation of 3T3 cells.
    Tupper JT; Zorgniotti F; Mills B
    J Cell Physiol; 1977 Jun; 91(3):429-40. PubMed ID: 193867
    [No Abstract]   [Full Text] [Related]  

  • 15. The regulation by fibroblast growth factor of early transport changes in quiescent 3T3 cells.
    Quinlan DC; Hochstadt J
    J Cell Physiol; 1977 Nov; 93(2):237-46. PubMed ID: 563406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of hyperthermia and verapamil on melphalan cytotoxicity and transport in multidrug-resistant Chinese hamster ovary cells.
    Averill-Bates DA; Courtemanche B
    Radiat Res; 1995 Jul; 143(1):17-25. PubMed ID: 7597140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of efflux of melphalan from L5178Y lymphoblasts in vitro.
    Begleiter A; Grover J; Goldenberg GJ
    Cancer Res; 1982 Mar; 42(3):987-91. PubMed ID: 7059994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytotoxicity as an indicator for transport mechanism: evidence that melphalan is transported by two leucine-preferring carrier systems in the L1210 murine leukemia cell.
    Vistica DT
    Biochim Biophys Acta; 1979 Jan; 550(2):309-17. PubMed ID: 569503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological and toxicological aspects of new imidazoacridinone antitumor agents.
    Berger B; Marquardt H; Westendorf J
    Cancer Res; 1996 May; 56(9):2094-104. PubMed ID: 8616856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor necrosis factor alpha and interleukin 11 secreted by malignant breast epithelial cells inhibit adipocyte differentiation by selectively down-regulating CCAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma: mechanism of desmoplastic reaction.
    Meng L; Zhou J; Sasano H; Suzuki T; Zeitoun KM; Bulun SE
    Cancer Res; 2001 Mar; 61(5):2250-5. PubMed ID: 11280794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.