These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 38153406)
41. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China. An J; Zou J; Wang J; Lin X; Zhu B Environ Sci Pollut Res Int; 2015 Dec; 22(24):19607-17. PubMed ID: 26272292 [TBL] [Abstract][Full Text] [Related]
42. Source apportionment of particulate matter based on numerical simulation during a severe pollution period in Tangshan, North China. He J; Zhang L; Yao Z; Che H; Gong S; Wang M; Zhao M; Jing B Environ Pollut; 2020 Nov; 266(Pt 3):115133. PubMed ID: 32693305 [TBL] [Abstract][Full Text] [Related]
43. [Regionalization and Analysis of PM Li SX; Zou B; Zhang FY; Liu N; Xue CH; Liu J Huan Jing Ke Xue; 2022 Oct; 43(10):4293-4304. PubMed ID: 36224116 [TBL] [Abstract][Full Text] [Related]
44. Performance evaluation of a photochemical model using different boundary conditions over the urban and industrialized metropolitan area of Vitória, Brazil. Pedruzzi R; Baek BH; Henderson BH; Aravanis N; Pinto JA; Araujo IB; Nascimento EGS; Reis Junior NC; Moreira DM; de Almeida Albuquerque TT Environ Sci Pollut Res Int; 2019 Jun; 26(16):16125-16144. PubMed ID: 30972670 [TBL] [Abstract][Full Text] [Related]
45. PM Qin M; Hu A; Mao J; Li X; Sheng L; Sun J; Li J; Wang X; Zhang Y; Hu J Sci Total Environ; 2022 Mar; 810():152268. PubMed ID: 34902404 [TBL] [Abstract][Full Text] [Related]
46. Contrasting Trends of Surface PM Lv M; Li Z; Jiang Q; Chen T; Wang Y; Hu A; Cribb M; Cai A Int J Environ Res Public Health; 2021 Nov; 18(23):. PubMed ID: 34886197 [TBL] [Abstract][Full Text] [Related]
47. Characteristics, sources of volatile organic compounds, and their contributions to secondary air pollution during different periods in Beijing, China. Liang S; Gao S; Wang S; Chai W; Chen W; Tang G Sci Total Environ; 2023 Feb; 858(Pt 2):159831. PubMed ID: 36336049 [TBL] [Abstract][Full Text] [Related]
48. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change. Campbell P; Zhang Y; Yan F; Lu Z; Streets D Environ Pollut; 2018 Jul; 238():918-930. PubMed ID: 29684896 [TBL] [Abstract][Full Text] [Related]
49. [Regional air pollution characteristics simulation of O3 and PM10 over Yangtze River Delta region]. Li L; Chen CH; Huang C; Huang HY; Li ZP; Fu JS; Jang CJ; Streets DG Huan Jing Ke Xue; 2008 Jan; 29(1):237-45. PubMed ID: 18441947 [TBL] [Abstract][Full Text] [Related]
50. The impact of synoptic circulation on air quality and pollution-related human health in the Yangtze River Delta region. Liao Z; Gao M; Sun J; Fan S Sci Total Environ; 2017 Dec; 607-608():838-846. PubMed ID: 28711845 [TBL] [Abstract][Full Text] [Related]
51. [Nonlinear Response Relationship Between Ozone and Precursor Emissions in the Pearl River Delta Region Under Different Transmission Channels]. Wu YK; Chen WH; Yan FH; Mao JY; Yuan B; Wang WW; Wang XM Huan Jing Ke Xue; 2022 Jan; 43(1):160-169. PubMed ID: 34989500 [TBL] [Abstract][Full Text] [Related]
52. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis. Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ; Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949 [TBL] [Abstract][Full Text] [Related]
53. [Characteristics and Sources of VOCs at Different Ozone Concentration Levels in Tianjin]. Wang WM; Gao JY; Xiao ZM; Li Y; Bi WK; Li LW; Yang N; Xu H; Kong J Huan Jing Ke Xue; 2021 Aug; 42(8):3585-3594. PubMed ID: 34309245 [TBL] [Abstract][Full Text] [Related]
54. [Response of PM Shang YJ; Mao YH; Liao H; Hu JL; Zou ZY Huan Jing Ke Xue; 2023 Aug; 44(8):4250-4261. PubMed ID: 37694620 [TBL] [Abstract][Full Text] [Related]
55. National air pollution distribution in China and related geographic, gaseous pollutant, and socio-economic factors. Liang D; Wang YQ; Wang YJ; Ma C Environ Pollut; 2019 Jul; 250():998-1009. PubMed ID: 31085487 [TBL] [Abstract][Full Text] [Related]
56. Understanding the underlying mechanisms governing the linkage between atmospheric oxidative capacity and ozone precursor sensitivity in the Yangtze River Delta, China: A multi-tool ensemble analysis. Zhao K; Wu Y; Yuan Z; Huang J; Liu X; Ma W; Xu D; Jiang R; Duan Y; Fu Q; Xu W Environ Int; 2022 Feb; 160():107060. PubMed ID: 34952358 [TBL] [Abstract][Full Text] [Related]
57. [Analysis of a Typical Ozone Pollution Process in Guangzhou in Winter]. Pei CL; Xie YT; Chen X; Zhang T; Qiu XN; Wang Y; Wang ZH; Li M Huan Jing Ke Xue; 2022 Oct; 43(10):4305-4315. PubMed ID: 36224117 [TBL] [Abstract][Full Text] [Related]
58. The London low emission zone baseline study. Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924 [TBL] [Abstract][Full Text] [Related]
59. Estimating State-Specific Contributions to PM2.5- and O3-Related Health Burden from Residential Combustion and Electricity Generating Unit Emissions in the United States. Penn SL; Arunachalam S; Woody M; Heiger-Bernays W; Tripodis Y; Levy JI Environ Health Perspect; 2017 Mar; 125(3):324-332. PubMed ID: 27586513 [TBL] [Abstract][Full Text] [Related]
60. Decrease in ambient volatile organic compounds during the COVID-19 lockdown period in the Pearl River Delta region, south China. Pei C; Yang W; Zhang Y; Song W; Xiao S; Wang J; Zhang J; Zhang T; Chen D; Wang Y; Chen Y; Wang X Sci Total Environ; 2022 Jun; 823():153720. PubMed ID: 35149077 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]