These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 38153525)
1. A label-free ratiometric fluorescent aptasensor based on a peroxidase-mimetic multifunctional ZrFe-MOF for the determination of tetrodotoxin. Liu S; Huo Y; Hu Z; Cao G; Gao Z Mikrochim Acta; 2023 Dec; 191(1):57. PubMed ID: 38153525 [TBL] [Abstract][Full Text] [Related]
2. A facile dual-mode aptasensor based on AuNPs@MIL-101 nanohybrids for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy detection of tetrodotoxin. Liu S; Huo Y; Deng S; Li G; Li S; Huang L; Ren S; Gao Z Biosens Bioelectron; 2022 Apr; 201():113891. PubMed ID: 34999522 [TBL] [Abstract][Full Text] [Related]
3. Ratiometric fluorescence sensing of formaldehyde in food samples based on bifunctional MOF. Zuo YN; Zhao XE; Xia Y; Liu ZA; Sun J; Zhu S; Liu H Mikrochim Acta; 2022 Dec; 190(1):36. PubMed ID: 36542183 [TBL] [Abstract][Full Text] [Related]
4. Tri-functional Fe-Zr bi-metal-organic frameworks enable high-performance phosphate ion ratiometric fluorescent detection. Li X; Liu P; Niu X; Ye K; Ni L; Du D; Pan J; Lin Y Nanoscale; 2020 Oct; 12(37):19383-19389. PubMed ID: 32945814 [TBL] [Abstract][Full Text] [Related]
5. A smartphone-based fluorescent biosensor with metal-organic framework biocomposites and cotton swabs for the rapid determination of tetrodotoxin in seafood. Liu S; Huo Y; Yin S; Chen C; Shi T; Mi W; Hu Z; Gao Z Anal Chim Acta; 2024 Jul; 1311():342738. PubMed ID: 38816159 [TBL] [Abstract][Full Text] [Related]
6. Aptamers-functionalized nanoscale MOFs for saxitoxin and tetrodotoxin sensing in sea foods through FRET. Dou X; Xu S; Jiang Y; Ding Z; Xie J Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121827. PubMed ID: 36081191 [TBL] [Abstract][Full Text] [Related]
7. A novel triple-signal biosensor based on ZrFe-MOF@PtNPs for ultrasensitive aflatoxins detection. Sun B; Panferov V; Guo X; Xiong J; Zhang S; Qin L; Yin C; Wang X; Liu C; Han K; Wang S; Jiang H Biosens Bioelectron; 2025 Jan; 267():116797. PubMed ID: 39307032 [TBL] [Abstract][Full Text] [Related]
8. Ratiometric fluorescent sensor based on 2D MOF nanosheets modified by DNA for sensitive detection of Hg Wu X; Chen Y; Cao W; Yang G Nanotechnology; 2021 Sep; 32(50):. PubMed ID: 34488211 [TBL] [Abstract][Full Text] [Related]
9. A sensitive fluorescence detection strategy for H Mu Z; Guo J; Li M; Wu S; Zhang X; Wang Y Mikrochim Acta; 2023 Feb; 190(3):81. PubMed ID: 36746829 [TBL] [Abstract][Full Text] [Related]
10. A ratiometric fluorescence probe based on graphene quantum dots and o-phenylenediamine for highly sensitive detection of acetylcholinesterase activity. Ye M; Lin B; Yu Y; Li H; Wang Y; Zhang L; Cao Y; Guo M Mikrochim Acta; 2020 Aug; 187(9):511. PubMed ID: 32833082 [TBL] [Abstract][Full Text] [Related]
11. Highly sensitive ratiometric fluorescence detection of tetracycline residues in food samples based on Eu/Zr-MOF. Zhang L; He Y; Wu Y; Zhang J; Li S; Zhang Z Food Chem; 2024 Mar; 436():137717. PubMed ID: 37839123 [TBL] [Abstract][Full Text] [Related]
12. Nano-octahedral bimetallic Fe/Eu-MOF preparation and dual model sensing of serum alkaline phosphatase (ALP) based on its peroxidase-like property and fluorescence. Shi W; Li T; Chu N; Liu X; He M; Bui B; Chen M; Chen W Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112404. PubMed ID: 34579916 [TBL] [Abstract][Full Text] [Related]
13. Ratiometric fluorescence assay for sulfide ions with fluorescent MOF-based nanozyme. Zhu N; Deng T; Zuo YN; Sun J; Liu H; Zhao XE; Zhu S Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jul; 295():122620. PubMed ID: 36930835 [TBL] [Abstract][Full Text] [Related]
14. One-pot construction of acid phosphatase and hemin loaded multifunctional metal-organic framework nanosheets for ratiometric fluorescent arsenate sensing. Xu X; Luo Z; Ye K; Zou X; Niu X; Pan J J Hazard Mater; 2021 Jun; 412():124407. PubMed ID: 33548790 [TBL] [Abstract][Full Text] [Related]
15. Ratiometric fluorescence detection of artemisinin based on photoluminescent Zn-MOF combined with hemin as catalyst. Sun K; Deng T; Sun J; Gao S; Liu H; Zhu S; Zhao XE Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 289():122253. PubMed ID: 36542922 [TBL] [Abstract][Full Text] [Related]
16. Shape-specific MOF-derived Cu@Fe-NC with morphology-driven catalytic activity: Mimicking peroxidase for the fluorescent- colorimetric immunosignage of ochratoxin. Chen M; Huang X; Chen Y; Cao Y; Zhang S; Lei H; Liu W; Liu Y J Hazard Mater; 2023 Feb; 443(Pt A):130233. PubMed ID: 36308933 [TBL] [Abstract][Full Text] [Related]
17. Exonuclease I-assisted fluorescence aptasensor for tetrodotoxin. Lan Y; Qin G; Wei Y; Wang L; Dong C Ecotoxicol Environ Saf; 2020 May; 194():110417. PubMed ID: 32171958 [TBL] [Abstract][Full Text] [Related]
18. Facilely self-assembled and dual-molecule calibration aptasensor based on SERS for ultra-sensitive detection of tetrodotoxin in pufferfish. Yin L; Fan M; She Q; You R; Lu Y; Lu D; Li M Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121275. PubMed ID: 35605417 [TBL] [Abstract][Full Text] [Related]
19. Highly sensitive analysis of tetrodotoxin based on free-label fluorescence aptamer sensing system. Lan Y; Qin G; Wei Y; Dong C; Wang L Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():411-418. PubMed ID: 31059893 [TBL] [Abstract][Full Text] [Related]
20. Ultrasensitive aptamer-functionalized Cu-MOF fluorescent nanozyme as an optical biosensor for detection of C-reactive protein. Ali GK; Omer KM Anal Biochem; 2022 Dec; 658():114928. PubMed ID: 36162448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]