These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38153606)

  • 1. Spiral groove bearing design for improving plasma skimming in rotary blood pumps.
    Jiang M; Hijikata W
    J Artif Organs; 2024 Sep; 27(3):212-221. PubMed ID: 38153606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of gap size and groove design of hydrodynamic bearing on plasma skimming effect for use in rotary blood pump.
    Jiang M; Sakota D; Kosaka R; Hijikata W
    J Artif Organs; 2022 Sep; 25(3):195-203. PubMed ID: 35088287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma Skimming in a Spiral Groove Bearing of a Centrifugal Blood Pump.
    Murashige T; Sakota D; Kosaka R; Nishida M; Kawaguchi Y; Yamane T; Maruyama O
    Artif Organs; 2016 Sep; 40(9):856-66. PubMed ID: 27645396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Plasma Skimming within a Hydrodynamic Bearing Gap for Designing Spiral Groove Bearings in Rotary Blood Pumps.
    Jiang M; Sakota D; Kosaka R; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1213-1217. PubMed ID: 34891505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma skimming efficiency of human blood in the spiral groove bearing of a centrifugal blood pump.
    Sakota D; Kondo K; Kosaka R; Nishida M; Maruyama O
    J Artif Organs; 2021 Jun; 24(2):126-134. PubMed ID: 33113050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of erythrocyte flow at a bearing gap in a hydrodynamically levitated centrifugal blood pump.
    Murashige T; Kosaka R; Sakota D; Nishida M; Kawaguchi Y; Yamane T; Maruyama O
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():270-3. PubMed ID: 26736252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation effect of cell exclusion on blood damage in spiral groove bearings.
    Chan CHH; Murashige T; Bieritz SA; Semenzin C; Smith A; Leslie L; Simmonds MJ; Tansley GD
    J Biomech; 2023 Jan; 146():111394. PubMed ID: 36462474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Impact of Pulsatile Flow on Suspension Force for Hydrodynamically Levitated Blood Pump.
    Fu Y; Hu Y; Huang F; Zhou M
    J Healthc Eng; 2019; 2019():8065920. PubMed ID: 31281617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating Plasma Skimming with Whole Blood in Small Gap Region Imitating Clearance of Blood Pumps.
    Jiang M; Murashige T; Sakota D; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5665-5669. PubMed ID: 31947138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applicability of Narrow Groove Theory in Designing Washout Features for Rotary Blood Pumps
    Bieritz SA; Alex Smith P; Wang Y; Cohn WE; Grande-Allen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5419-5424. PubMed ID: 34892352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump.
    Han Q; Zou J; Ruan X; Fu X; Yang H
    Artif Organs; 2012 Aug; 36(8):739-46. PubMed ID: 22747897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell exclusion in couette flow: evaluation through flow visualization and mechanical forces.
    Leslie LJ; Marshall LJ; Devitt A; Hilton A; Tansley GD
    Artif Organs; 2013 Mar; 37(3):267-75. PubMed ID: 23356400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The spiral groove bearing as a mechanism for enhancing the secondary flow in a centrifugal rotary blood pump.
    Amaral F; Gross-Hardt S; Timms D; Egger C; Steinseifer U; Schmitz-Rode T
    Artif Organs; 2013 Oct; 37(10):866-74. PubMed ID: 23635098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concept for a new hydrodynamic blood bearing for miniature blood pumps.
    Kink T; Reul H
    Artif Organs; 2004 Oct; 28(10):916-20. PubMed ID: 15384998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences between blood and a Newtonian fluid on the performance of a hydrodynamic bearing for rotary blood pumps.
    Amaral F; Egger C; Steinseifer U; Schmitz-Rode T
    Artif Organs; 2013 Sep; 37(9):786-92. PubMed ID: 23980561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A passive magnetically and hydrodynamically suspended rotary blood pump.
    Stoiber M; Grasl C; Pirker S; Raderer F; Schistek R; Huber L; Gittler P; Schima H
    Artif Organs; 2009 Mar; 33(3):250-7. PubMed ID: 19245524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study.
    Thamsen B; Mevert R; Lommel M; Preikschat P; Gaebler J; Krabatsch T; Kertzscher U; Hennig E; Affeld K
    Int J Artif Organs; 2016 Jun; 39(4):178-83. PubMed ID: 27034319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative hemolysis tests of rotary blood pumps.
    Itkin GP; Matveev YG; Romanov O
    Artif Organs; 1995 Jul; 19(7):616-9. PubMed ID: 8572961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Blood-Immersed Bearings in Continuous-Flow Rotary Blood Pumps.
    Ranganath NK; Rashidi M; Antaki JF; Phillips KG; Kon ZN; Smith DE; Reyentovich A; Moazami N
    ASAIO J; 2020 Apr; 66(4):343-347. PubMed ID: 31192849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation.
    Kosaka R; Maruyama O; Nishida M; Yada T; Saito S; Hirai S; Yamane T
    Artif Organs; 2009 Oct; 33(10):798-804. PubMed ID: 19681836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.