These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38154079)

  • 21. Improved Lithium Storage Performance of a TiO
    Cai L; Gu FC; Meng SM; Zhuang AQ; Dong H; Li ZZ; Guan ZF; Li DS; Li Y; Xu XX; Li Q; Cao Q
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries.
    Huang HB; Yang Y; Chen LH; Wang Y; Huang SZ; Tao JW; Ma XT; Hasan T; Li Y; Xu Y; Su BL
    Nanoscale; 2016 Jun; 8(21):10928-37. PubMed ID: 26864500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries.
    Wang HE; Jin J; Cai Y; Xu JM; Chen DS; Zheng XF; Deng Z; Li Y; Bello I; Su BL
    J Colloid Interface Sci; 2014 Mar; 417():144-51. PubMed ID: 24407670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemically Lithiated TiO2 Heterostructured Nanosheet Anode with Excellent Rate Capability and Long Cycle Life for High-Performance Lithium-Ion Batteries.
    Balogun MS; Zhu Y; Qiu W; Luo Y; Huang Y; Liang C; Lu X; Tong Y
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25991-6003. PubMed ID: 26552948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled synthesis of hollow C@TiO
    Pei J; Geng H; Ang EH; Zhang L; Cao X; Zheng J; Gu H
    Nanoscale; 2018 Sep; 10(36):17327-17334. PubMed ID: 30198042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of Li
    Xu H; Chen J; Li Y; Guo X; Shen Y; Wang D; Zhang Y; Wang Z
    Sci Rep; 2017 Jun; 7(1):2960. PubMed ID: 28592792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Strategy for Synthesis of Nanosheets Consisting of Alternating Spinel Li
    Wu L; Leng X; Liu Y; Wei S; Li C; Wang G; Lian J; Jiang Q; Nie A; Zhang TY
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4649-4657. PubMed ID: 28117572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategy for enhanced performance of silicon nanoparticle anodes for lithium-ion batteries.
    Chen X; Zheng J; Li L; Chu W
    RSC Adv; 2022 Jun; 12(28):17889-17897. PubMed ID: 35765341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lychee-like TiO
    Chen Y; Liu F; Zhao Y; Ding M; Wang J; Zheng X; Wang H; Record MC; Boulet P
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile Green Synthesis of Pseudocapacitance-Contributed Ultrahigh Capacity Fe
    Tran Huu H; Im WB
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35152-35163. PubMed ID: 32805793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward Highly Stable Anode for Secondary Batteries: Employing TiO
    Luo R; Hu X; Zhang N; Li L; Wu F; Chen R
    Small; 2022 Mar; 18(11):e2105713. PubMed ID: 35060316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries.
    Wen Z; Ci S; Mao S; Cui S; He Z; Chen J
    Nanoscale Res Lett; 2013 Nov; 8(1):499. PubMed ID: 24267743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterostructured and Mesoporous Nb
    Xu W; Xu Y; Schultz T; Lu Y; Koch N; Pinna N
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):795-805. PubMed ID: 36542687
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrogen Plasma-Treated Core-Bishell Si@SiO
    Hu J; Fu L; Rajagopalan R; Zhang Q; Luan J; Zhang H; Tang Y; Peng Z; Wang H
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27658-27666. PubMed ID: 31290647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Watermelon-like TiO
    Zheng YQ; Yuan YF; Tong ZW; Yin H; Yin SM; Guo SY
    Nanotechnology; 2020 May; 31(21):215407. PubMed ID: 32032007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Electrochemical and Structural Changes of Phosphorus-Doped TiO
    El Bendali A; Aqil M; Hdidou L; El Halya N; El Ouardi K; Alami J; Boschetto D; Dahbi M
    ACS Omega; 2024 Apr; 9(13):14911-14922. PubMed ID: 38585080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of Lithium Silicide Nanoparticles as Anode Materials for Advanced Lithium Ion Batteries.
    Li X; Kersey-Bronec FE; Ke J; Cloud JE; Wang Y; Ngo C; Pylypenko S; Yang Y
    ACS Appl Mater Interfaces; 2017 May; 9(19):16071-16080. PubMed ID: 28453258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Ordered TiO2 Microcones with High Rate Performance for Enhanced Lithium-Ion Storage.
    Rhee O; Lee G; Choi J
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14558-63. PubMed ID: 27218822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HF-free synthesis of anatase TiO2 nanosheets with largely exposed and clean {001} facets and their enhanced rate performance as anodes of lithium-ion battery.
    Cheng XL; Hu M; Huang R; Jiang JS
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19176-83. PubMed ID: 25295712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets.
    Zheng Z; Wu HH; Liu H; Zhang Q; He X; Yu S; Petrova V; Feng J; Kostecki R; Liu P; Peng DL; Liu M; Wang MS
    ACS Nano; 2020 Aug; 14(8):9545-9561. PubMed ID: 32658458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.