These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38154133)

  • 1. Role of Coulomb blockade in nonlinear transport of conducting polymers.
    Guo Z; Wang J; Hu K; Shan Y
    Nanotechnology; 2024 Jun; 35(35):. PubMed ID: 38154133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collective Transport for Nonlinear Current-Voltage Characteristics of Doped Conducting Polymers.
    Wang J; Liu D; Yu L; Liu F; Niu J; Yang G; Lu C; Lu N; Li L; Liu M
    Phys Rev Lett; 2023 Apr; 130(17):177001. PubMed ID: 37172249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Coulomb Blockade on the Charge Transport through the Topological States of Finite Armchair Graphene Nanoribbons and Heterostructures.
    Kuo DMT
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coulomb Blockade in a Two-Dimensional Conductive Polymer Monolayer.
    Akai-Kasaya M; Okuaki Y; Nagano S; Mitani T; Kuwahara Y
    Phys Rev Lett; 2015 Nov; 115(19):196801. PubMed ID: 26588405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coulomb Blockade in a Nonthermalized Quantum Dot.
    McArdle G; Davies R; Lerner IV; Yurkevich IV
    Phys Rev Lett; 2023 Nov; 131(20):206303. PubMed ID: 38039480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Andreev reflection versus Coulomb blockade in hybrid semiconductor nanowire devices.
    Doh YJ; De Franceschi S; Bakkers EP; Kouwenhoven LP
    Nano Lett; 2008 Dec; 8(12):4098-102. PubMed ID: 19367957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Coulomb-blockade to nonlinear quantum dynamics in a superconducting circuit with a resonator.
    Gramich V; Kubala B; Rohrer S; Ankerhold J
    Phys Rev Lett; 2013 Dec; 111(24):247002. PubMed ID: 24483693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coulomb blockade in monolayer MoS2 single electron transistor.
    Lee K; Kulkarni G; Zhong Z
    Nanoscale; 2016 Apr; 8(14):7755-60. PubMed ID: 27001412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coulomb-blockade transport in single-crystal organic thin-film transistors.
    Schoonveld WA; Wildeman J; Fichou D; Bobbert PA; van Wees BJ ; Klapwijk TM
    Nature; 2000 Apr; 404(6781):977-80. PubMed ID: 10801122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coulomb Blockade Plasmonic Switch.
    Xiang D; Wu J; Gordon R
    Nano Lett; 2017 Apr; 17(4):2584-2588. PubMed ID: 28301161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crossover from Coulomb blockade to ballistic transport in InAs nanowire devices.
    Wang LB; Pan D; Huang GY; Zhao J; Kang N; Xu HQ
    Nanotechnology; 2019 Mar; 30(12):124001. PubMed ID: 30566928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coulomb blockade in an open quantum dot.
    Amasha S; Rau IG; Grobis M; Potok RM; Shtrikman H; Goldhaber-Gordon D
    Phys Rev Lett; 2011 Nov; 107(21):216804. PubMed ID: 22181909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles investigation of quantum transport through an endohedral N@C60 in the Coulomb blockade regime.
    Yu Z; Chen J; Zhang L; Wang J
    J Phys Condens Matter; 2013 Dec; 25(49):495302. PubMed ID: 24214776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of room temperature negative differential resistance in multi-layer heterostructures of quantum dots and conducting polymers.
    Kannan V; Kim MR; Chae YS; Ramana ChV; Rhee JK
    Nanotechnology; 2011 Jan; 22(2):025705. PubMed ID: 21139189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crossover from Kondo-assisted suppression to co-tunneling enhancement of tunneling magnetoresistance via ferromagnetic nanodots in MgO tunnel barriers.
    Yang H; Yang SH; Parkin SS
    Nano Lett; 2008 Jan; 8(1):340-4. PubMed ID: 18095740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport Characteristics of Silicon Multi-Quantum-Dot Transistor Analyzed by Means of Experimental Parametrization Based on Single-Hole Tunneling Model.
    Lee Y; Jun H; Park S; Kim DY; Lee S
    Nanomaterials (Basel); 2023 Jun; 13(11):. PubMed ID: 37299712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunneling into multiwalled carbon nanotubes: coulomb blockade and the Fano resonance.
    Yi W; Lu L; Hu H; Pan ZW; Xie SS
    Phys Rev Lett; 2003 Aug; 91(7):076801. PubMed ID: 12935039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative differential photoconductance in gold nanoparticle arrays in the Coulomb blockade regime.
    Mangold MA; Calame M; Mayor M; Holleitner AW
    ACS Nano; 2012 May; 6(5):4181-9. PubMed ID: 22497236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable-Barrier Quantum Coulomb Blockade Effect in Nanoscale Transistors.
    Yadav P; Chakraborty S; Moraru D; Samanta A
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of linker molecules on charge transport through self-assembled single-nanoparticle devices.
    Zabet-Khosousi A; Suganuma Y; Lopata K; Trudeau PE; Dhirani AA; Statt B
    Phys Rev Lett; 2005 Mar; 94(9):096801. PubMed ID: 15783986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.