These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38154229)

  • 1. Modular hierarchical reinforcement learning for multi-destination navigation in hybrid crowds.
    Ou W; Luo B; Wang B; Zhao Y
    Neural Netw; 2024 Mar; 171():474-484. PubMed ID: 38154229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SafeCrowdNav: safety evaluation of robot crowd navigation in complex scenes.
    Xu J; Zhang W; Cai J; Liu H
    Front Neurorobot; 2023; 17():1276519. PubMed ID: 37904892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning.
    Wan Z; Jiang C; Fahad M; Ni Z; Guo Y; He H
    IEEE Trans Cybern; 2020 Apr; 50(4):1669-1682. PubMed ID: 30475740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive hierarchical reinforcement learning for path-efficient mapless navigation with moving target.
    Li H; Luo B; Song W; Yang C
    Neural Netw; 2023 Aug; 165():677-688. PubMed ID: 37385022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Vision Navigation System for Quadruped Robots with Foothold Adaptation Learning.
    Ren J; Dai Y; Liu B; Xie P; Wang G
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging Expert Demonstration Features for Deep Reinforcement Learning in Floor Cleaning Robot Navigation.
    Cimurs R; Merchán-Cruz EA
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Context-Aware Multi-Scale Aggregation Network for Congested Crowd Counting.
    Huang L; Shen S; Zhu L; Shi Q; Zhang J
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crowd-Aware Mobile Robot Navigation Based on Improved Decentralized Structured RNN via Deep Reinforcement Learning.
    Zhang Y; Feng Z
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative modular reinforcement learning for large discrete action space problem.
    Ming F; Gao F; Liu K; Zhao C
    Neural Netw; 2023 Apr; 161():281-296. PubMed ID: 36774866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Error-related potential-based shared autonomy via deep recurrent reinforcement learning.
    Wang X; Chen HT; Lin CT
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36541532
    [No Abstract]   [Full Text] [Related]  

  • 15. Adaptive Quadruped Balance Control for Dynamic Environments Using Maximum-Entropy Reinforcement Learning.
    Sun H; Fu T; Ling Y; He C
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Video-based crowd synthesis.
    Flagg M; Rehg JM
    IEEE Trans Vis Comput Graph; 2013 Nov; 19(11):1935-47. PubMed ID: 24029912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distributed deep reinforcement learning based on bi-objective framework for multi-robot formation.
    Li J; Liu Q; Chi G
    Neural Netw; 2024 Mar; 171():61-72. PubMed ID: 38091765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation.
    Song S; Kidziński Ł; Peng XB; Ong C; Hicks J; Levine S; Atkeson CG; Delp SL
    J Neuroeng Rehabil; 2021 Aug; 18(1):126. PubMed ID: 34399772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning With Stochastic Guidance for Robot Navigation.
    Xie L; Miao Y; Wang S; Blunsom P; Wang Z; Chen C; Markham A; Trigoni N
    IEEE Trans Neural Netw Learn Syst; 2021 Jan; 32(1):166-176. PubMed ID: 32203029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning Mobile Manipulation through Deep Reinforcement Learning.
    Wang C; Zhang Q; Tian Q; Li S; Wang X; Lane D; Petillot Y; Wang S
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.