BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38154261)

  • 1. Assessing airflow unsteadiness in the human respiratory tract under different expiration conditions.
    Jing H; Ge H; Tang H; Farnoud A; Saidul Islam M; Wang L; Wang C; Cui X
    J Biomech; 2024 Jan; 162():111910. PubMed ID: 38154261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of airflow field in the upper airway under unsteady respiration pattern using large eddy simulation method.
    Cui X; Wu W; Ge H
    Respir Physiol Neurobiol; 2020 Aug; 279():103468. PubMed ID: 32505518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scale resolving simulations of the effect of glottis motion and the laryngeal jet on flow dynamics during respiration.
    Emmerling J; Vahaji S; Morton DAV; Fletcher DF; Inthavong K
    Comput Methods Programs Biomed; 2024 Apr; 247():108064. PubMed ID: 38382308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Numerical simulation on cycle change form of the pressure and wall shear in human upper respiratory tract].
    Li F; Xu X; Sun D; Zhao X; Tan S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):409-14. PubMed ID: 23858771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of the impact of glottis properties on the airflow field in the human trachea using V-LES.
    Chen W; Wang L; Chen L; Ge H; Cui X
    Respir Physiol Neurobiol; 2022 Jan; 295():103784. PubMed ID: 34517114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study of the airflow structures in an idealized mouth-throat under light and heavy breathing intensities using large eddy simulation.
    Cui X; Wu W; Gutheil E
    Respir Physiol Neurobiol; 2018 Jan; 248():1-9. PubMed ID: 29128524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Investigation of Flow Characteristics in the Obstructed Realistic Human Upper Airway.
    Liu X; Yan W; Liu Y; Choy YS; Wei Y
    Comput Math Methods Med; 2016; 2016():3181654. PubMed ID: 27725841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Airflow velocities in the airways during expiration on different end-expiratory lung volumes: computational study.
    Sohn K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5599-602. PubMed ID: 17946318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Simulation of Tidal Breathing Through the Human Respiratory Tract.
    Azarnoosh J; Sreenivas K; Arabshahi A
    J Biomech Eng; 2020 Jun; 142(6):. PubMed ID: 31956902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realistic glottal motion and airflow rate during human breathing.
    Scheinherr A; Bailly L; Boiron O; Lagier A; Legou T; Pichelin M; Caillibotte G; Giovanni A
    Med Eng Phys; 2015 Sep; 37(9):829-39. PubMed ID: 26159687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expiratory airflow patterns and gas exchange in the newborn infant: results of model simulations.
    Zamel D; Revow M; England SJ
    Respir Physiol; 1989 Jan; 75(1):19-27. PubMed ID: 2717812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation.
    Calmet H; Gambaruto AM; Bates AJ; Vázquez M; Houzeaux G; Doorly DJ
    Comput Biol Med; 2016 Feb; 69():166-80. PubMed ID: 26773939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of airway motion and breathing phase during imaging on CFD simulations of respiratory airflow.
    Gunatilaka CC; Schuh A; Higano NS; Woods JC; Bates AJ
    Comput Biol Med; 2020 Dec; 127():104099. PubMed ID: 33152667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-measurement of tracheobronchial angles on inspiratory and expiratory chest CT in COPD: respiratory changes and correlation with airflow limitation.
    Onoe R; Yamashiro T; Handa H; Azagami S; Matsuoka S; Inoue T; Miyazawa T; Mineshita M
    Int J Chron Obstruct Pulmon Dis; 2018; 13():2399-2407. PubMed ID: 30127602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of low density gas breathing on vesicular lung sounds.
    Austrheim O; Kraman SS
    Respir Physiol; 1985 May; 60(2):145-55. PubMed ID: 4012089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the site of wheezes in pulmonary emphysema: airflow simulation study by the use of A 4D lung model.
    Kitaoka H; Cok S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():449-52. PubMed ID: 24109720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain measurement on four-dimensional dynamic-ventilation CT: quantitative analysis of abnormal respiratory deformation of the lung in COPD.
    Xu Y; Yamashiro T; Moriya H; Tsubakimoto M; Nagatani Y; Matsuoka S; Murayama S;
    Int J Chron Obstruct Pulmon Dis; 2019; 14():65-72. PubMed ID: 30587962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational simulations of airflow in an in vitro model of the pediatric upper airways.
    Allen GM; Shortall BP; Gemci T; Corcoran TE; Chigier NA
    J Biomech Eng; 2004 Oct; 126(5):604-13. PubMed ID: 15648813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Fluid Dynamics Modeling of Respiratory Airflow in Tracheobronchial Airways of Infant, Child, and Adult.
    Tsega EG
    Comput Math Methods Med; 2018; 2018():9603451. PubMed ID: 30515236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of dynamic glottis and tidal breathing on respiratory sounds in a human upper airway model.
    Xi J; Wang Z; Talaat K; Glide-Hurst C; Dong H
    Sleep Breath; 2018 May; 22(2):463-479. PubMed ID: 29101633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.